User:Z3463953

From CellBiology

My student page

homework from coordinator

Group Projects
This year's main topic is Blood Cell Biology. Each group should discuss with group members the specific sub-topic that will be covered by their project.

Here is a list of some of the cell types (Structure and Function)

Cell Type (PuMed citations)


Below are the groups to which students have been randomly assigned. You should now on the project discussion page add your own suggestion for a specific topic. Once your group has agreed on the topic, add this as a heading to the project page before Lab 3.


2016 Projects: Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7

Group 1: User:Z5017493 | User:Z3330991 | User:Z5020043 | User:Z5020175 | User:Z3489355

Group 2: User:Z5018320 | User:Z5015980 | User:Z3376375 | User:Z3461106

Group 3: User:Z5019595 | User:Z5019962 | User:Z5018925 | User:Z3461911

Group 4: User:Z5020356 | User:Z3463895 | User:Z3376502 | User:Z3423497 | User:Z5021149

Group 5: User:Z5015719 | User:Z3462124 | User:Z3463953 | User:Z5017292

Group 6: User:Z5018866 | User:Z3329177 | User:Z3465531 | User:Z5105710

Group 7: User:Z5021060 | User:Z5016365 | User:Z5016784 | User:Z3414546 | User:Z3417773

Group Assessment Criteria

Group Assessment Criteria

  1. The key points relating to the topic that your group allocated are clearly described.
  2. The choice of content, headings and sub-headings, diagrams, tables, graphs show a good understanding of the topic area.
  3. Content is correctly cited and referenced.
  4. The wiki has an element of teaching at a peer level using the student's own innovative diagrams, tables or figures and/or using interesting examples or explanations.
  5. Evidence of significant research relating to basic and applied sciences that goes beyond the formal teaching activities.
  6. Relates the topic and content of the Wiki entry to learning aims of cell biology.
  7. Clearly reflects on editing/feedback from group peers and articulates how the Wiki could be improved (or not) based on peer comments/feedback. Demonstrates an ability to review own work when criticised in an open edited wiki format. Reflects on what was learned from the process of editing a peer's wiki.
  8. Evaluates own performance and that of group peers to give a rounded summary of this wiki process in terms of group effort and achievement.
  9. The content of the wiki should demonstrate to the reader that your group has researched adequately on this topic and covered the key areas necessary to inform your peers in their learning.
  10. Develops and edits the wiki entries in accordance with the above guidelines.
Individual Lab Assessments
Lab 8 Assessment
2016 Lab 8 - Lab 8 Assessment (to be completed before Lab 9)
  1. Add your peer assessment to your own student page to the site.
  2. Add your peer assessment to each project discussion page to the site.
Lab 6 Assessment
2016 Lab 6 -
  1. Identify an antibody against your group blood cell protein that is commercially available.
  2. Add a link to the original data sheet page and identify the type of group blood cell protein.
  3. Include the following information: type of antibody (polyclonal, monoclonal), species raised in, species reacts against, types of application uses, and if available any reference using that antibody.
Lab 2 Assessment
2016 Lab 2 - Super resolution microscopy
  1. Find a recent research article (not review) that uses super resolution microscopy technique.
  2. Write a brief summary of the paper (referenced) and what the super resolution microscopy technique showed.
    1. This should not simply be the abstract of the paper.
    2. This can be 2-3 paragraphs no longer.
  3. Include a super resolution microscopy image from the paper.
    1. Therefore the paper must be from a source that you can reuse.
    2. Image uploaded as in Lab 1 (summary box - description/reference/copyright/student image)
    3. Image should appear as a "thumbnail" (thumb) next to your paper summary (with citation legend) See Test page
Lab 1 Assessment
2016 Lab 1 - Lab 1 Assessment (to be completed before Lab 2) The test page I set up in the Lab
  1. Add your own student page to the site.
  2. Add your signature for Lab attendance.
  3. Add a sub-heading.
  4. Add an external Link.
  5. Add an internal Link.
  6. Add an image from PubMed, PloS or BioMed Central journal related to prokaryote cellular component. Make sure it includes both the reference and copyright information, with the file and where it appears on your page.


Week 4 - Super-resolution microscopy

File:Super-resolution single molecular localisation microscopy use in T-cells.jpeg
Super resolution microscopy on T-cell protein nanoclusters[1]

SUMMARY: T-cells are highly mobile and have to travel relatively long distances within and outside the circulatory system whilst forming thousands of transient reactions with antigen presenting cells. Actin rearrangement is significant in the motility and extravasation of T cells. When T-cells bind to MHC to form an immunological synapse the spatio-temporal behaviour of the proteins change. For example, in the formation of micro and nano clusters.

Micro and nano clusters of proteins allow for dynamic control centers in the cell membrane. An example of these are the T cell receptors. However until now most of the information we have about these micro clusters have come from biochemical techniques but now with the advancements in super resolution microscopy, we can "see" beyond the previous diffraction limit to a resolution of 200nm.

The use of the super-resolution microscopy, in particular the single molecular localization microscope techniques, allowed researchers to get high quality data and to elucidate the 3 dimensional structures and even functions of the nano clusters, such as the TCRs and observe their behaviours temporally.

Week 5 - 4 mast cell related studies summarised with pictures

<pubmed>21621255</pubmed>

File:Histology of intestine, staining for mast cells.jpg
File:Histology of intestine, staining for mast cells.jpg[2]

Summary: People who suffer from systemic mastocytosis have clinical manifestations that are characteristic of mast cell mediator release. A similar disorder called monoclonal mast cell activation sydrome (MCAS) has an unclarified clinical manifestation. Unlike mastocytosis the patient doesn’t have abnormally high levels of mast cells (MCs), rather, the MCs they have express chemical mediators excessively. The aim of the study was to determine the clinical manifestations of MCAS and to compare it against the recently proposed diagnostic criteria. The authors of the paper ruled out clonal MC disease and found lab data indicative of MC activation. Further, the patients responded to anti-MC therapy. This was part of the classification used in this experiment to include patients as MCAS sufferers (this criteria was pre-established by previous research). The clinical manifestations and diagnostic criteria were consistent with one another. Almost all patients had abdominal pain, dermatographism or flushing. The research suggested that MCAS should have a more significant clinical profile due to its excellent response to anti-MC mediators. There were, however, some limitations such as: it was a nonblind study and there is no consensus as to a reference standard for number of mucosal mast cells in GIT.



<pubmed>25321659</pubmed>

File:Data of PD15 (15% dec in FEV(1)) after 3 weeks of dietary Omega 3 PUFA.png[3]

Summary: Poly-unsaturated fatty acids, such as some mast cell mediators, are involved in inflammation. Bronchial hyper-responsiveness (BHR) is a state of heightened sensitivity to bronchospasm that can occur as a result of mast cell mediator release in asthma and COPD. This study aimed to investigate whether dietary omega-3 PUFAs could inhibit mannitol-induced BHR. Mannitol induction of BHR mimics mast cell activation. The study was a randomize, double-blind, placebo controlled and crossover trial design. Patients suffered from asthma, did not smoke, and took omega-3s for 3 weeks. The omega 3 supplementation did not change the levels of mast cell pro-inflammatory mediator release. It is likely that it is more difficult to change the metabolic profile of mast cells than just by dietary intervention as the mast cell probably still has a significant reserve of pro-inflammatory lipids.


<pubmed>25378594</pubmed>

File:MTOR and RICTOR in LAD2 cells in different environments.gif
File:MTOR and RICTOR in LAD2 cells in different environments.gif[4]

Summary:

'Rapamycin-insensitive companion of mammalian target of rapamycin' (RICTOR) is a protein that regulates cell growth as a result of the presence nutrients and growth factors. This study showed that RICTOR can function as a negative regulator in igE induced mast cell degranulation, independent of other regulatory proteins like mTOR or mTOR2. They further showed at what stages in the molecular pathways the regulation took place. By analysing Ca2+ mobilisation and cytoskeletal rearrangement with confocal microscopy they were able to hypothesise that there was phosphorylation of certain proteins (LAT and PLCy1). They compared their results with a RICTOR knock-down model and found a decrease in igE induced degranulation



<pubmed>25712524</pubmed>

File:Cardiac angiotensin (Ang) II levels in the left ventricles of sham-operated and ovariectomized (OVX) female rats.jpg
File:Cardiac angiotensin (Ang) II levels in the left ventricles of sham-operated and ovariectomized (OVX) female rats.jpg[5]

Summary: Estrogen seems to have protective effect on heart cells. It likely interacts via the receptor GPR30 which is expressed in the heart. Estrogen may even regulate components of hormone systems associated with the heart like the renin-angiotensin pathway. This study aimed to investigate whether the cardioprotective effects observed as a result of estrogen occur via GPR30. GPR30 has important regulatory roles in cardiac mast cell activity and proliferation. This experiment will be looking at the latter. The findings suggested that the effects of estrogen on cardiac mast cells/chymase/Ang II occur specifically through activation of GPR30 to decrease cardiac mast cell number. However, further investigations are needed for the exact mechanisms by which GPR30 affects cardiac mast cell number in vivo. Investigation in the mast cell GPR30/chymase/angII pathway could have therapeutic uses in postmenopausal women at risk of cardiovascular disease


Week 6 homework: cytoskeleton

notes: non-primary neurons used in lab. Use neuroblastoma line that have been immortalized. Primary neurons come directly from neuronal tissue of organism.


File:A Comparason of Neuroblastoma morphologies in Group Tm4 over expression-mice and wild-type.PNG

| | | | | | |





















|

Week7/lab6 Homework

1.Anti-Mast cell antibody [MCG35]

2. http://www.abcam.com/mast-cell-antibody-mcg35-ab20217.html

3. i)monoclonal ii) mouse iii)reacts with humans iv)useful for mast cell identification in immunological reactions and hypersensitivity diseases. The antigen is found in granule components of mast cells.

references used: Rimmer EF & Horton MA Origin of human mast cells studied by dual immunofluorescence. Clin Exp Immunol 68:712-8 (1987). Read more (PubMed: 3308221) Rimmer EF et al. Human mast cells detected by monoclonal antibodies. J Clin Pathol 37:1249-55 (1984). Read more (PubMed: 6389604)







--

Attendance

Z3463953 (talk) 11:55, 10 March 2016 (AEDT) Z3463953 (talk) 11:07, 17 March 2016 (AEDT) Z3463953 (talk) 11:20, 24 March 2016 (AEDT) Z3463953 (talk) Z3463953 (talk) 11:10, 14 April 2016 (AEST) was present lab on 7 th april as evident by my groups assessible CRISPR work Z3463953 (talk) 11:42, 21 April 2016 (AEST) Z3463953 (talk) 11:11, 28 April 2016 (AEST) Z3463953 (talk) 12:07, 5 May 2016 (AEST)

Lab one assessment

Search pubmed

prokaryotic cytoskeleton

http://www.ncbi.nlm.nih.gov/pubmed/?term=eukaryotic+cytoskeleton

PMID 26756351

<pubmed>26756351</pubmed>

How to make an in-text citation

bacterial division protein FtsZ.[6]
  1. <pubmed>26009169</pubmed>
  2. <pubmed>21621255</pubmed>
  3. <pubmed>25321659</pubmed>
  4. <pubmed>25378594</pubmed>
  5. <pubmed>25712524</pubmed>
  6. <pubmed>26756351</pubmed>

links

Carnegie stage table

Addition of prokaryote image

alt text

Detection of Prokaryotic Genes in the Amphimedon queenslandica Genome



Lecture 1

smh My little pony

bio med


testz8600021

What have i learnt today? (10/4/16)

This beautiful morning i have spent the past hour enjoying the tasty luxury of learning about the programming involved in the creation of wikipages. It is quite an auspicious opportunity to spend such precious time among such rich company. Attendances, links and even subheadings have been mastered in this lab.