From CellBiology
Revision as of 10:46, 24 March 2016 by Z3461106 (talk | contribs)

My Student Page

Group Projects
This year's main topic is Blood Cell Biology. Each group should discuss with group members the specific sub-topic that will be covered by their project.

Here is a list of some of the cell types (Structure and Function)

Cell Type (PuMed citations)

Below are the groups to which students have been randomly assigned. You should now on the project discussion page add your own suggestion for a specific topic. Once your group has agreed on the topic, add this as a heading to the project page before Lab 3.

2016 Projects: Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7

Group 1: User:Z5017493 | User:Z3330991 | User:Z5020043 | User:Z5020175 | User:Z3489355

Group 2: User:Z5018320 | User:Z5015980 | User:Z3376375 | User:Z3461106

Group 3: User:Z5019595 | User:Z5019962 | User:Z5018925 | User:Z3461911

Group 4: User:Z5020356 | User:Z3463895 | User:Z3376502 | User:Z3423497 | User:Z5021149

Group 5: User:Z5015719 | User:Z3462124 | User:Z3463953 | User:Z5017292

Group 6: User:Z5018866 | User:Z3329177 | User:Z3465531 | User:Z5105710

Group 7: User:Z5021060 | User:Z5016365 | User:Z5016784 | User:Z3414546 | User:Z3417773

Group Assessment Criteria

Group Assessment Criteria

  1. The key points relating to the topic that your group allocated are clearly described.
  2. The choice of content, headings and sub-headings, diagrams, tables, graphs show a good understanding of the topic area.
  3. Content is correctly cited and referenced.
  4. The wiki has an element of teaching at a peer level using the student's own innovative diagrams, tables or figures and/or using interesting examples or explanations.
  5. Evidence of significant research relating to basic and applied sciences that goes beyond the formal teaching activities.
  6. Relates the topic and content of the Wiki entry to learning aims of cell biology.
  7. Clearly reflects on editing/feedback from group peers and articulates how the Wiki could be improved (or not) based on peer comments/feedback. Demonstrates an ability to review own work when criticised in an open edited wiki format. Reflects on what was learned from the process of editing a peer's wiki.
  8. Evaluates own performance and that of group peers to give a rounded summary of this wiki process in terms of group effort and achievement.
  9. The content of the wiki should demonstrate to the reader that your group has researched adequately on this topic and covered the key areas necessary to inform your peers in their learning.
  10. Develops and edits the wiki entries in accordance with the above guidelines.
Individual Lab Assessments
Lab 8 Assessment
2016 Lab 8 - Lab 8 Assessment (to be completed before Lab 9)
  1. Add your peer assessment to your own student page to the site.
  2. Add your peer assessment to each project discussion page to the site.
Lab 6 Assessment
2016 Lab 6 -
  1. Identify an antibody against your group blood cell protein that is commercially available.
  2. Add a link to the original data sheet page and identify the type of group blood cell protein.
  3. Include the following information: type of antibody (polyclonal, monoclonal), species raised in, species reacts against, types of application uses, and if available any reference using that antibody.
Lab 2 Assessment
2016 Lab 2 - Super resolution microscopy
  1. Find a recent research article (not review) that uses super resolution microscopy technique.
  2. Write a brief summary of the paper (referenced) and what the super resolution microscopy technique showed.
    1. This should not simply be the abstract of the paper.
    2. This can be 2-3 paragraphs no longer.
  3. Include a super resolution microscopy image from the paper.
    1. Therefore the paper must be from a source that you can reuse.
    2. Image uploaded as in Lab 1 (summary box - description/reference/copyright/student image)
    3. Image should appear as a "thumbnail" (thumb) next to your paper summary (with citation legend) See Test page
Lab 1 Assessment
2016 Lab 1 - Lab 1 Assessment (to be completed before Lab 2) The test page I set up in the Lab
  1. Add your own student page to the site.
  2. Add your signature for Lab attendance.
  3. Add a sub-heading.
  4. Add an external Link.
  5. Add an internal Link.
  6. Add an image from PubMed, PloS or BioMed Central journal related to prokaryote cellular component. Make sure it includes both the reference and copyright information, with the file and where it appears on your page.


Z3461106 (talk) 11:54, 10 March 2016 (AEDT)

Z3461106 (talk) 11:06, 17 March 2016 (AEDT)

Z3461106 (talk) 11:04, 24 March 2016 (AEDT)

Lab 1 Assessment

Search Pubmed

prokaryotic cytoskeleton

eukaryotic cytoskeleton

PMID 26756351


BioMed Central

What I've Learned So Far

I have learned how to setup a Wiki page for myself. It has been an interesting experience because it's something that I have not done before. The instructions to get set up are not all that complicated. Just a few minor coding steps.

Lab 2 Assessment

This article outlines how super-resolved structured illumination microscopy (SR-SIM) results can be processed through open-source programs such as ImageJ as opposed to proprietary softwares. Usually, companies which produce SR-SIM only allow image processing through their own proprietary computers. But, with the advent of fairSIM (free analysis and interactive interactive reconstruction for structured illumination microscopy), an open-source SR-SIM imaging software, there is a new solution for if users of SR-SIM require access to processing software. This software aims to be ready to use, easy to operate, free and open-source.

Testing on fairSIM was executed on different samples and microscopes such as DeltaVision|OMX which provided three-beam and two-beam interference illumination data to assess for compatibility with fairSIM. The first specimen was fluorescent Tetraspeck beads that are easily distinguished when applying SR-SIM, but not on widefield. This was apparent on the home-built system and the OMX. The next specimen was a liver sinusoidal endothelial cells sample stained with fluorophore. These were once again imaged on the OMX, with the fairSIM being able to process faster than the SoftWORX software that was built by Deltavision. This was due to fairSIM utilising single-slice mode as opposed to 3D SIM reconstructions. But nevertheless, both were able to project images that were clearly visible.

Some other additional samples used included cytoskeletal protein fibrils and mitochondria which were this time imaged on the Zeiss Elyra S1 and gave similarly clear reconstructions. Therefore, it was discussed that the fairSIM software which uses the Gustafsson approach, although is early in development, will become a highly useful tool for SR-SIM users and will be a cost-effective, fast and customisable solution.



Examples for intermediate SR-SIM results displayed as power spectra in frequency space. [1]

How to make an in-text citation

Bacterial division protein FtsZ.[2]

  1. <pubmed>26996201</pubmed>
  2. <pubmed>26756351</pubmed>


Carnegie stage table

Lecture 1

The Sydney Morning Herald

Student Image

AdFIZZI Effects on Lung Fibrosis.jpeg

AdFIZZI Effects on Lung Fibrosis [1]

You can also make it smaller, e.g. 200px!

AdFIZZI Effects on Lung Fibrosis.jpeg

AdFIZZI Effects on Lung Fibrosis [1]

Or a thumb!

AdFIZZI Effects on Lung Fibrosis.jpeg

AdFIZZI Effects on Lung Fibrosis [1]

  1. 1.0 1.1 1.2 <pubmed>24516640</pubmed>