Difference between revisions of "Talk:2015 Group 5 Project"

From CellBiology
m (Protected "Talk:2015 Group 5 Project" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
Line 2: Line 2:
[[2015_Group_5_Project|'''Group 5''']]: [[User:Z5050800|Z5050800]] | [[User:Z3417843|Z3417843]] | [[User:Z3461763|Z3461763]] | [[User:Z3462921|Z3462921]]
[[2015_Group_5_Project|'''Group 5''']]: [[User:Z5050800|Z5050800]] | [[User:Z3417843|Z3417843]] | [[User:Z3461763|Z3461763]] | [[User:Z3462921|Z3462921]]
File:Laminin_History_Graph.png|Graph 1 The number of publications on Laminin, per year, from 1975 to 2014. A rapid increase in publications can be seen from 1979 onwards, when Laminin was first discovered.
File:Laminin structure.png|350px|left|thumb|Figure 1 The laminin structure is composed of three polypeptides chains named A, B1 and B2 (nowadays α, β and γ chains, respectively) which are held together in cruciform-like structure by disulphide bonds (three disulfide-linked polypeptides).Red is collagen binding, blue is entactin binding and black is proteoglycan binding.
File:Figure 1. Domain structure and self-assembly of laminin-111.jpg|Figure 2 Schematic drawing of the laminin-111 heterotrimer. The three short arms of the cross-shaped molecule have a common domain structure and consist of laminin N-terminal (LN) domains, laminin-type epidermal growth factor-like (LE) domains, and L4 domains, as indicated for the α1 chain. The α1 chain uniquely contains five laminin G-like (LG) domains. LG1-3 likely interact with the C-terminal residues of the γ1 chain. (B) The three-arm interaction model of laminin self-assembly. The ternary nodes in the network are formed by the N-terminal regions of one α, one β and one γ chain. The long arm of the laminin heterotrimer is not involved in network formation<ref name="PMID23076216"><pubmed>23076216</pubmed></ref>.
File:Laminin332's role in cancer.jpg|Figure 3 Internal cascade from laminin 332 to migration of cell
File:Junctional Epidermolysis Bullosa.png|Figure 4 Clinical manifestations of Junctional Epidermolysis bullosa (JEB)<ref name="PMID 19330236 "><pubmed>23739692</pubmed></ref>
File:Junctional epidermolysis bullosa.jpg|Figure 5 Cutaneous basement membrane zone (BMZ)
File:Histology- Blistering .png|centre|Figure 6 Histological representation of blistering<ref name="PMID 19330236 "><pubmed>25888738</pubmed></ref>
File:Laminin alpha interactions-2 .png|Figure 7: Laminin alpha interactions-2 interacting with the glycans of alpha
α-dystroglycan<ref name="PMID 19330236 "><pubmed> 19330236 </pubmed></ref>
File:Structure_of_Laminin.jpg|Figure 9 Structure of Laminin - 111 domain organisation and recombinant laminin coiled - coil domain.
File:Role_of_p53.jpg|Figure 10 The nuclear accumulation of p53, triggered by inflammation, causes LMα1 to deposit onto the BM, accompanying LMα5. The increased expression of LMα1 and LMα5 in an inflamed microenvironment, potentially creates a physical barrier, resulting in attenuated inflammation, seen in the transgenic mice. Higher accumulation of this laminin in a [http://en.wiktionary.org/wiki/carcinogenic '''carcinogenic'''] environment though, is believed to contribute to pro - tumorigenic settings.
File:Comparison_of_Mice.jpg|Figure 11The newborn [http://en.wiktionary.org/wiki/knockout '''knockout'''] mice were noted to be smaller, have blistered feet and smaller pouches (B). The mice that carried both the transgenes (C), appeared very similar to the controls (A) (D). The rescued [http://en.wiktionary.org/wiki/knockout '''knockout'''] mice survived to reach adulthood (F), with a similar length and weight to the wildtype littermates (E).
File:Proposed_model.jpg|Figure 12  The tissue organisation is disrupted as a result of the loss of LM - 111 and LM - 332, uncontrolled growth of the tumor and continued expression of LM - 511, exposing the tumor to the surrounding [http://en.wiktionary.org/wiki/stroma '''stroma''']. (2) All the tumor cells undergo the epithelial to mesenchymal transition, under the influence of [http://en.wiktionary.org/wiki/stromal '''stromal'''] factors, losing cell - cell contacts. (3) Tumor cell attachment and intravasation is supported by the increased LM - 511 amounts and overall changes in tumor vasculature LM isoforms. (4) Invasion of tumor cells into metastatic sites is supported through [http://en.wiktionary.org/wiki/integrin#English '''integrin'''] and laminin interaction. When these [http://en.wiktionary.org/wiki/integrin#English '''integrins'''] bind with laminin, tumor cells survive and grow.
File:Distribution_of_Laminin_in_the_Adenoid_Cystic_Carcinoma.jpg|Figure 13 Distribution of Laminin in the Adenoid Cystic [http://en.wiktionary.org/wiki/carcinoma '''Carcinoma''']

Revision as of 13:45, 4 June 2015

2015 Projects: Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7

--Mark Hill (talk) 08:42, 21 May 2015 (EST) Your Group Project will now have peer feedback from the class, use this feedback to improve your project before submission.

Group Assessment Criteria

  1. The key points relating to the topic that your group allocated are clearly described.
  2. The choice of content, headings and sub-headings, diagrams, tables, graphs show a good understanding of the topic area.
  3. Content is correctly cited and referenced.
  4. The wiki has an element of teaching at a peer level using the student's own innovative diagrams, tables or figures and/or using interesting examples or explanations.
  5. Evidence of significant research relating to basic and applied sciences that goes beyond the formal teaching activities.
  6. Relates the topic and content of the Wiki entry to learning aims of cell biology.
  7. Clearly reflects on editing/feedback from group peers and articulates how the Wiki could be improved (or not) based on peer comments/feedback. Demonstrates an ability to review own work when criticised in an open edited wiki format. Reflects on what was learned from the process of editing a peer's wiki.
  8. Evaluates own performance and that of group peers to give a rounded summary of this wiki process in terms of group effort and achievement.
  9. The content of the wiki should demonstrate to the reader that your group has researched adequately on this topic and covered the key areas necessary to inform your peers in their learning.
  10. Develops and edits the wiki entries in accordance with the above guidelines.

Group 5: Z5050800 | Z3417843 | Z3461763 | Z3462921




--Z3417843 (talk) 22:01, 22 March 2015 (EST) Hey everyone! I'm Carl and I'm looking forward to meeting you all next week in the lab. I did Embryology last semester and so if you need any help regarding the website, you can ask me and I'll try my best to help you (unless of course you're tech savvy hahaha) Anyway, we should decide on a topic before any of the good ones are gone. Looking at the extracellular matrix pages on this website, I think we are gonna have to choose among these topics: collagen, elastin, proteoglycans, fibronectin, laminin. I think everyone would want to choose collagen since it looks like it's the one with the most info. Also, when you reply on discussion, I suggest you add your signature first then your reply (not the other way around. Way too confusing). That's all from me for now. Hope you all had a great weekend!

Hi guys! I'm Bek. Thanks for offering Carl. Sorry for the late reply. We should choose our topic tomorrow so we have options. Collagen and elastin have a already been taken, leaving us with proteoglycans, fibronectin, laminin. Looking around i think either fibronectin or laminin have a bit more information and subtopics available. I would be happy with any of the three, what does everyone else think? --Z3462921 (talk) 23:47, 24 March 2015 (EST)

Hi all! I'm Jose and sorry for the late reply too. I agree with you Bek about fibronectin or laminin. We have to choose soon.--Z5050800 (talk) 19:20, 25 March 2015 (EST)

--Z3417843 (talk) 21:17, 25 March 2015 (EST) Hi all! I think we should go with Laminin. I put laminin as our heading just so that we already have a topic. We can always change anyway. And he did say there's a chance he might change what we write about because if we divide the topics by ECM structures, there won't be enough for all groups. So, I don't know. Anyway, feel free to change it if you want to do fibronectin instead. Totally fine with me. :)

--Z3461763 (talk) 17:23, 26 March 2015 (EST)Heyy all! I'm Chala! Sorry for the late reply. Only just realised the discussion had been opened up. I'm ok with whatever topic we choose (looks like Laminin it is!). :D

--Z3461763 (talk) 18:05, 26 March 2015 (EST)Just confirming, the four headings we've decided on are Structure, Function, Diseases and Current Research. :) The following lists who agreed to research what. Have fun :)

Jose - Structure Carl - Function Rebekah - Diseases Chala - Current Research

--Z5050800 (talk) 05:21, 2 April 2015 (EST) Individual assessment 3 "...The reference along with your description should then be pasted on both your group discussion page (?!?!?) and your own personal page."


Article 1: “Origin and Evolution of Laminin Gene Family Diversity”: Laminins are a family of multidomain glycoproteins that are important contributors to the structure of metazoan extracellular matrices. To investigate the origin and evolution of the laminin family, the researchers characterized the full complement of laminin-related genes in the genome of the sponge, Amphimedon queenslandica. Five Amphimedon laminin-related genes possess the conserved molecular features, and most of the domains found in bilaterian laminins, but all display domain architectures distinct from those of the canonical laminin chain types known from model bilaterians. This finding prompted to perform a comparative genomic analysis of laminins and related genes from a choanoflagellate and diverse metazoans and to conduct phylogenetic analyses using the conserved Laminin N-terminal domain in order to explore the relationships between genes with distinct architectures. Together, results suggest that gene duplication and loss and domain shuffling and loss all played a role in the evolution of the laminin family and contributed to the generation of lineage-specific diversity in the laminin gene complements of extant metazoans.


Article 2: “Laminins in basement membrane assembly”: The heterotrimeric laminins are a defining component of all basement membranes (BM) and self-assemble into a cell-associated network. The three short arms of the cross-shaped laminin molecule form the network nodes, with a strict requirement for one α, one β and one γ arm. The globular domain at the end of the long arm binds to cellular receptors, including integrins, α-dystroglycan, heparan sulfates and sulfated glycolipids. Collateral anchorage of the laminin network is provided by the proteoglycans perlecan and agrin. A second network is then formed by type IV collagen, which interacts with the laminin network through the heparan sulfate chains of perlecan and agrin and additional linkage by nidogen. The difficulty of imaging BMs in situ, without harmful extraction from tissues, has prevented a clearer understanding of BM architecture and our current model is largely based on a multitude of indirect clues rather than on direct observation. An intriguing aspect is that the thickness of a typical BM is of the same order as the dimensions of a single laminin molecule, which makes it unlikely that laminins are standing erect on the cell surface. Another question is whether the researchers actually know all the molecular interactions that are important for BM assembly and maturation. Some of current knowledge is based on early experiments with relatively crude protein preparations, and a search for additional interactions using modern recombinant and proteomic techniques might prove fruitful.


Article 3: "The laminin family": Laminins are large molecular weight glycoproteins constituted by the assembly of three disulfide-linked polypeptides, the α, β and γ chains. The human genome encodes 11 genetically distinct laminin chains. Structurally, laminin chains differ by the number, size and organization of a few constitutive domains, endowing the various members of the laminin family with common and unique important functions. In particular, laminins are indispensable building blocks for cellular networks physically bridging the intracellular and extracellular compartments and relaying signals critical for cellular behavior, and for extracellular polymers determining the architecture and the physiology of basement membranes. Therefore, the cell adhesion-promoting activity of laminin isoforms is now well characterized, also at the structural level. However, the specificity, if any, of the signaling pathways activated by the different laminin-binding integrins is not known.


Articule 4: "Laminin α4 deficient mice exhibit decreased capacity for adipose tissue expansion and weight gain.”: A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM) has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. These article describes the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4-/-) and compared to wild-type (Lama4+/+) control animals. Lama4-/- mice exhibited reduced weight gain in response to both age and high fat diet. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion.



Figure 1. Domain structure and self-assembly of laminin-111.jpg

Figure 1. Domain structure and self-assembly of laminin-111.

(A) Schematic drawing of the laminin-111 heterotrimer. The three short arms of the cross-shaped molecule have a common domain structure and consist of laminin N-terminal (LN) domains, laminin-type epidermal growth factor-like (LE) domains, and L4 domains, as indicated for the α1 chain. The α1 chain uniquely contains five laminin G-like (LG) domains. LG1-3 likely interact with the C-terminal residues of the γ1 chain. (B) The three-arm interaction model of laminin self-assembly. The ternary nodes in the network are formed by the N-terminal regions of one α, one β and one γ chain. The long arm of the laminin heterotrimer is not involved in network formation.

  1. <pubmed>23076216</pubmed>
  2. 2.0 2.1 <pubmed>23739692</pubmed> Cite error: Invalid <ref> tag; name "PMID 19330236" defined multiple times with different content


Copyright © 2012 Landes Bioscience This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

--Z3417843 (talk) 23:31, 5 April 2015 (EST) I just realised he did write to put it in our discussion page. I just put it in the group page because I think he meant the group project page. Anyway, for Jose (structure), I found this paper on Plos One (http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109388) and I thought it might help you with structure. If you think it isn't that helpful, you don't have to use it :)

--Z3417843 (talk) 23:33, 5 April 2015 (EST) Also, if you're starting on working on the group project already, don't worry about tidying up the references now. It's much easier to do it later, as long as you make sure that EVERYTHING IS CITED. Thanks :)

--Z3461763 (talk) 16:15, 16 April 2015 (EST) I'll upload mine when I get home because it's saved on my usb... It's completed just haven't uploaded. :D

--Z3461763 (talk) 21:16, 16 April 2015 (EST) is there a reason why anything i'm trying to upload won't upload? it's been an hour and nothing will save!

--Z3461763 (talk) 23:16, 16 April 2015 (EST)

The Heterotrimeric Laminin Coiled – Coil Domain Exerts Anti – Adhesive Effects and Induces a Pro – Invasive Phenotype

Laminins are a family of ECM glycoproteins localised in the basement membrane. As well as their structural roles, they also regulate cellular processes. These include cell migration, differentiation and proliferation. Laminins also have multiple binding partners; hence, the study was to determine what would happen to individual truncated Laminin chains in the absence of their normal partners. They did this by selecting a transfectable cell line with low endogenous Laminin chain expression, by first encoding the truncated Laminin α1, β1 and γ1 chains which encode the entire LCC. Truncated α1 chains were found to be efficiently secreted as a monomer when expressed alone, as opposed to the β1 and γ1, which were poorly secreted. But, when all three were expressed together, they formed a trimer that was secreted into the medium. This confirmed previous findings that a chain subunit expression is necessary for the secretion of the β1 and γ1 chain partners. It also confirmed consistent with previous analysis that the truncated chains can also assemble into the trimetric coiled - coil structure independent of the rest of the molecule. Through interactions with other ECM molecules and cell surface receptors, Laminins exert multiple biological functions. However, majority of the cell – binding sites map to regions distinct from the coiled – coil domain. This domain is believed to play a key role in chain assembly yet it is considered a functionally silent domain, with a few exceptions. This study first revealed and demonstrated that the Laminin coiled – coil domain inhibits cell adhesion and spreading. It is also noticed that anti – adhesive properties of ECM proteins are not a common observation. Cell adhesion modulation is often related to cell migration. The actin cytoskeleton plays an important role in the processes of cell movement, with filopodia and lamellipodia formation being crucial. Because decreased actin stress fibre formation and increased membrane ruffle formation are consistent with the promotion of cell migration, it is a tempting speculation that the adhesive property of the Laminin coiled – coil domain is linked to the modulation of cell migration in tissues where the Laminin coiled – coil domain became accessible. Reference Patricia Santos-Valle, Irene Guijarro-Muñoz, Angel M Cuesta, Vanesa Alonso-Camino, Maider Villate, Ana Alvarez-Cienfuegos, Francisco J Blanco, Laura Sanz, Luis Alvarez-Vallina The heterotrimeric laminin coiled-coil domain exerts anti-adhesive effects and induces a pro-invasive phenotype. PLoS ONE: 2012, 7(6);e39097 PMID:22723936 Copyright This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

The Laminin Response in Inflammatory Bowel Disease: Protection or Malignancy?

Laminins are major components of the epithelial basement membrane. They play a crucial role in tissue homeostasis and also an important role in tissue maintenance and cancer progression, which represents an inherent risk of IBD, however this role is poorly understood. Repetitive tissue destruction, repair and oxidative damage can together trigger mutagenesis and potentially initiate cancer causing events. In wound healing and tissue repair, it is made prevalent that inflammatory responses are commonly associated with the remodelling of the ECM. Altered ECM expression and ECM binding integrin adhesion receptors have been located in several inflamed tissues. Intestinal basement membranes are specialised ECM networks that functions to separate epithelial cells from underlying connective tissue. They are mainly composed for collagen IV, Laminins, perlecan and nidogens. The basement membrane functions as a physical and chemical barrier. Several human disorders arise from defects in the BM assembly or composition. Laminin are a family of basement membrane glycoproteins. Each contains an α, β and γ chain, which form characteristic heterotrimers. Laminin, particularly the α chain that carries the cell binding domains, is important for cell adhesion, migration, proliferation and preventing cell apoptosis. Laminins have also been found in the human intestine. When there is inflammation in IBD, mucosal ulceration and subsequent tissue repairs occur, promoting the constant remodelling of the basement membrane, hence it is believed that Laminin may play an unknown role in the inflammation response, impacting the bodies response to inflammation. Furthermore, it has also been described that altered immunoreactivity of BM constituents in the IBD, have shown an increase in alpha Laminin, meaning it is likely that Laminin participates in the regeneration of the intestine. This result was highlighted when an increase in LMα1 and LMα5 expression was present in the colon tissues of IBD patients and in DSS – driven colitis in mice. The inflammation in these cases was accompanied by the nuclear accumulation of p53 as well as changes in the properties of the cell, caused in particular by the presence of the UACL in IBD. Final results revealed that the LMα1 and LMα5 chains were overexpressed, using human IBD and murine colitis specimens, when inflamed. Furthermore, results also suggested the role that Laminins could play in tissue restitution, as Laminins promoted wound closure in tissue rebuilding when there are disrupted epithelial cell monolayers. In conclusion, it was found that the forced expression of LMα1 and LMα5 protected against DDS – induced inflammation, yet in carcinogenic conditions, accelerated colitis – associated tumorigenesis. Reference Caroline Spenlé, Olivier Lefebvre, Joël Lacroute, Agnès Méchine-Neuville, Frédérick Barreau, Hervé M Blottière, Bernard Duclos, Christiane Arnold, Thomas Hussenet, Joseph Hemmerlé, Donald Gullberg, Michèle Kedinger, Lydia Sorokin, Gertraud Orend, Patricia Simon-Assmann The Laminin Response in Inflammatory Bowel Disease: Protection or Malignancy? PLoS ONE: 2014, 9(10);e111336 PMID:25347196 Copyright This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Keratinocyte – Targeted Expression of Human Laminin y2 Rescues Skin Blistering and Early Lethality of Laminin γ2 Deficient Mice

Laminin – 332 is heterotrimetric basement membrane component comprised of α3, β3 and γ2 Laminin chains. It is responsible for epithelial cell processes, including adhesion, migration and differentiation and is commonly found in many embryonic and adult tissues. Keratinocytes are responsible for the secretion of Laminin – 332 in the skin, which is identified as a key component of hemidesmosomes that connect the keratinocytes to the underlying dermis. In mice, when any of the three Laminin – 332 chains are not expressed, impaired anchorage and detachment of the epidermis occurs. This is similarly seen in human Junctional Epidermolysis Bullosa. As a result of this condition, death occurs a few days after birth. A dox – controllable human Laminin γ2 transgene was expressed, under a keratinocyte – specific promoter on the Laminin γ2 knockout background. The mice, as a result appeared similar to their wild – type littermates, didn’t develop skin blisters, were fertile and survived for more than 1.5 years. Skin is a protective barrier, composed of two primary layers, known as the epidermis and dermis. These two layers are separated a sheet of specialised extracellular matrix known at the basement membrane zone (BMZ). The BMZ functions as a border, for structural support, influences cell attachment, proliferation, differentiation and migration. Should a defect occur in the structure or in one of the components of the BMZ, tissue separation and blister formation may result. Junctional Epidermolysis Bullosa (JEB) is a genetic skin blistering disease, which results in, in the most severe cases, the death of infants within their first year of life. JEB is mostly caused by the absence of Laminin – 332, due to mutations arising within the chains. Lm -332 is secreted by skin keratinocytes and forms a critical component of the BMZ, functioning as an adhesion molecule between the epidermis and dermis. Lm – 332 is present in the basement membranes of the brain, gastrointestinal tract, heart, kidney, liver, lung, trachea, skin, spleen, thymus, salivary gland, mammary gland, ovary, prostate and testis. Hence, those who experience the skin blistering also experience blistering of the mucous membranes of the mouth and gastrointestinal tract, in turn affecting nutrition. The experiment involved the expression of the human Laminin γ2 in the mice, to test whether or not it helped prevent their early lethality. Newborn offspring that carried neither of one of the transgenes had blistered skin, smaller milk pouches and died a few days after birth. However, the mice that were carrying the human gene looked the same as the others at birth, survived for more than a year and had similar weights and lengths as the normal mice. When examining the affects of the human gene expression in the mice, the Laminin γ2 was detected in the mouth of the mice. It was also found that the newborn mice, which lacked the transgene, had a separated epidermal layer, while those who had the human Laminin showed a more attached structure. Reference Tracy L Adair-Kirk, Gail L Griffin, Michelle J Meyer, Diane G Kelley, Jeffrey H Miner, Douglas R Keene, M Peter Marinkovich, J Michael Ruppert, Jouni Uitto, Robert M Senior Keratinocyte-targeted expression of human laminin γ2 rescues skin blistering and early lethality of laminin γ2 deficient mice. PLoS ONE: 2012, 7(9);e45546 PMID:23029085 Copyright This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Laminin – 511 A multi – functional adhesion protein regulating cell migration, tumor invasion and metastasis

Laminins are major constituents of basement membranes. Recent studies indicate that Laminin – 511 contributes to tumor dissemination and metastasis in advanced breast carcinomas as well as other tumor types. Furthermore, experimental evidence has suggested that there is a prognostic significance with a higher expression of Laminin – 511 and that by targeting tumor – Laminin – 511 interactions, there may be a therapeutic potential in advanced cancer patients. Laminins are abundant extracellular matric proteins, present predominately in basement membranes. There are approximately 16 isoforms, named according to their specific combination of the α, β and γ chains. A combination of technological advances and experiments has contributed to the belief that LM – 511 and its receptors regulate cancer progression. The LM – 511 expression patterns vary between different tumor types whether it be basement membrane localisation to diffuse stromal or tumor cell expression. It’s level in tumor cells or surrounding vasculature varies based on the stage of tumor progression. Many studies show that LM – 511 expressions in advanced tumors is maintained or even increased. It’s also observed that in advanced human breast cancers and bone metastases, there is high tumor cell expression of LM – 511. Discussions are about whether future studies should look at LM – 511 expression in tumors and whether it has a particular clinical relevance with a propensity to metastasize to bone. Whether or not LM – 511 expression has any contribution to breast tumors, has not yet been fully confirmed. As has been found from previous studies, many tumor lines synthesize, secrete and adhere to LM-511, potentially indicating that LM – 511 is able to produce it’s effect on tumors via autocrine stimulation in part. Receptor studies are the reason for the many believed functions of LM’s in breast cancer progression and metastasis and it is possibly inferred, from several observations that LM – binding integrins in metastatic breast tumors are mediated through attachment to LM – 511. Laboratory results are consistent with this theory, specifically observing that metastatic breast tumor lines adhere and migrate more efficiently on LM – 511, as opposed to on metastatic lines. If the believed and found observations are correct then metastatic potential can be impacted by blocking the production of LM – 511 and or the function and expression of its receptors. Increasing experimental evidence is supporting the link of LM – 511 to cancer progression and reinforcing the belief that LM – 511 has a broad role in tumor invasion and metastasis. However, questions in regards to its prognostic significance, precise mechanism of action and potential as a therapeutic target still need to be addressed and answered. Hence, the following should be looked more into: - For staining archival material, the generation of more robust antibodies. - Clarification of the precise contribution of LM – 511 to the metastatic process. - Contribution (if any) of stromal/ vascular LM – 511 to metastasis (tumor – derived LM – 511 in metastasis is already supported). - Studies in vivo, to provide proof of the therapeutic benefits that targeting LM receptors could have. As metastasis is responsible for majority of cancer – related deaths and is a clinical challenge, the continuation of research of Laminins has the potential to present several information and solutions to overcoming this disease, as well as assist in the development of alternative strategies to prevent and/ or delay metastatic progression. Reference Normand Pouliot, Nicole Kusuma Laminin-511: a multi-functional adhesion protein regulating cell migration, tumor invasion and metastasis. Cell Adh Migr: , 7(1);142-9 PMID:23076212 Copyright This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

Proposed Model Proposed model.jpg Figure Legend: Proposed model of LM-511 expression and function during cancer progression and metastasis. Reference: Normand Pouliot, Nicole Kusuma Laminin-511: a multi-functional adhesion protein regulating cell migration, tumor invasion and metastasis. Cell Adh Migr: , 7(1);142-9 PMID:23076212 Copyright: This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

--Z3462921 (talk) 18:27, 19 April 2015 (EST) http://www.ncbi.nlm.nih.gov/pubmed/24706882

Article 1: Laminin 332 or LN332 is a basally expressed extracellular matrix protein that is part of a group of laminin isoforms that demonstrates tumor-promoting properties. In normal tissue Laminin 332’s main role is to maintain epithelial-mesenchyme cohesion when the tissue is exposed to external disruptive forces. It also stimulates cells including carcinoma cells to migrate allowing for metastasis and has thus been associated with the progression of a tumor. Past research has found a direct correlation between LN331 and both Tumor invasiveness and a poor patient prognosis. The role of Laminin 332 in breast carcinomas is however unclear. This study aims to examine the relationship between Laminin 332 and breast carcinomas. The researchers tested the expression of LN332 in surgically excised breast carcinomas using immunohistochemistry (IHC) and western blot. The primary objective of the study was to examine patterns of expression in varying molecular classes of breast carcinomas. The basal-like phenotypic subgroup has a worse prognosis observed, and thus was of particular interest. The genetic profiling method that defines the basal phenotype was not widely available, so a surrogate was used, namely Triple negative (TN) breast cancer. Triple negative is a sub group of breast carcinomas that lack progesterone receptors, estrogen receptors and HER2 positivity. Results revealed 70% of TN carcinomas stained for LN332 and 14.7% of non-TN carcinomas indicating its expression with a basal phenotype. The combination of LN332 and CK 5/6 or EGFR identified 92% of triple negative breast carcinoma. Expression of the basal marker LN332 and CK 5/6 or EGFR may help in the identification of breast carcinomas with the basal phenotype. Furthermore the expression of LN332 a pro-invasive protein in TN breast carcinomas suggests another mechanism by which the TN phenotype could be aggressive. Further study will need to be performed in order to determine weather LN332 has an effect on the invasive or migratory phenotype.


Article 2:

Epidermolysis bullosa (EB) is a disorder resulting in structural weakening of the skin and mucous layer. Junctional EB is caused by a mutation that results in the cleavage of the dermal-epidermal junction. An unexplained phenotypic variability that is present in these mutations promotes the idea of genetic modifier effects. The study in question aims to analyze the effect of genetic modifiers on the strength of dermal-epidermal adhesion and clinical severity of Junctional EB. The results indicated that Col17a1 is a strong genetic modifier of Junctional EB that develops by mutation of Lamc2.jeb Allelic variants in Col17a1 alters the strength of dermal-epidermal adhesion therefore impacting the severity of Junctional EB. Overall the results indicated that normally innocuous allelic variants could cause mutations to have an impact on the strength of dermal-epidermal adhesion and severity of Junctional EB. This may help the genetic prognosis and diagnosis of Epidermolysis bullosa.


Article 3: Muscular dystrophy is a group of disorders characterized by the weakening of the skeletal muscle. The muscular disorders that can be caused by over 30 mutated genes, many of which encode for molecules involved in maintain structural integrity and cell adhesion. One of the most sever forms of muscular dystrophy involve the mutation of laminin α2 or LAMA2. Mutations on LAMA2 have been reported to range from absence of laminin α2 to the partial deficiency. It is however not clear as to how a laminin α2 mutation may effect protein expression and how these effected proteins cause affect disease. The aim of this study to analyze the genotype and phenotype, determine the mechanism of disease and determine the function of laminin. The study uses animal models to do this. An allelic series of mutations in the mice were used to facilitate genotype-phenotype correlation. The allelic series included mice with absence of laminin α2, reduced levels of laminin α2, truncated protein and reduced levels of truncated protein. Three lines of LAMA2 mutated mice with a complete deficiency in laminin α2 and two lines of transgenic mice with overexpressed laminin α2 were used to analyze protein expression. All the mutated mice lacked laminin α2 in peripheral nerve. The results indicate the muscular dystrophy in truncate protein mice was mild but more severe than that of the laminin α2 absent mice. The mechanisms for expression of laminin α2 in muscle and nerve also appeared different. The results provided evidence that the amount of laminin α2 is critical in the prevention of muscular dystrophy and could thus act as a possible treatment.

Variation in the onset and severity of JEB-nH.jpg

File:Variation in the onset and severity of JEB-nH



Thomas J Sproule, Jason A Bubier, Fiorella C Grandi, Victor Z Sun, Vivek M Philip, Caroline G McPhee, Elisabeth B Adkins, John P Sundberg, Derry C Roopenian Molecular identification of collagen 17a1 as a major genetic modifier of laminin gamma 2 mutation-induced junctional epidermolysis bullosa in mice. PLoS Genet.: 2014, 10(2);e1004068 PMID:24550734


This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article 4:

Epithelial-to-mesenchymal transition (EMT) is a process allowing an epithelial cell to assume a mesenchymal phenotype through biochemical changes via its basement membrane and is essential for cell migration and early embryonic development. This process is regulated by signalling pathways and cellular changes involving the expression of E-cadherin, matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9). Laminin-111, a trimeric basement membrane glycoprotein is one of the first extracellular matrix (ECM) proteins expressed during the two-cell stage in early embryogenesis and its importance together with other proteins, collagen IV, nidogen and perlecan in the assembly of the basement membrane is known. This study proposes a previously unidentified role of Laminin-111, namely its ability to influence the regulation of EMT. They report the generation of a biologically active Laminin-111 fragment by MMP2 processing and demonstrate that the fragment acts through the α3β1-integrin/extracellular matrix metalloproteinase inducer complex to trigger the down-regulation of MMP2 in human and mouse ECM. Recognizing ECM and MMP2 interactions will increase our understanding of the pluripotent stage of early embryonic development to develop new applications and disease-modeling platforms.


--Z3461763 (talk) 13:42, 20 April 2015 (EST) Can Jose and Bek please post their articles on the actual 'page'? Thank you :) Otherwise Dr Hill cannot see it!!

--Z5050800 (talk) 18:32, 23 April 2015 (EST) about my Lab 6 Assessment

1.Identify an antibody that can been used in your group's extracellular matrix project.

Anti-Laminin antibody (ab11575). Function: binding to cells via a high affinity receptor, laminin is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components.

2.Identify the species deriving the antibody.

Rabbit polyclonal to Laminin

3.Identify the working concentration for the antibody.

Concentration batch dependent within range: 250 µl at 0.54 - 0.72 mg/ml. The referenced paper does not quote the concentration that was used.

4.Identify a secondary antibody that could be used with this antibody.

Some examples that could be used with this antibody:

Biotin-conjugated goat anti-rabbit IgG polyclonal (1/1000)

TRITC-conjugated donkey anti-rabbit IgG (H+L) polyclonal (1/200)

FITC conjugated goat anti-rabbit IgG used at a 1/100 dilution.

5.Identify a paper that has used this antibody.

Matthaei M et al. Endothelial cell microRNA expression in human late-onset Fuchs' dystrophy. Invest Ophthalmol Vis Sci 55:216-25 (2014). Human. Read more (PubMed: 24334445)

--Z3462921 (talk) 05:32, 27 April 2015 (EST) The antibody I am using is Laminin α-1 Antibody (M-20, I will post the answers up soon

--Z3417843 (talk) 18:52, 27 April 2015 (EST) I was about to post a message asking everyone if they could post which antibody they're planning on doing but looks like everyone's done it, Hahaha! I'm still looking for antibodies for laminin. Hope you all had a great weekend!

--Z3417843 (talk) 23:48, 27 April 2015 (EST) Hey guys! I'll be doing Anti-Laminin 5 antibody (ab14509). Also,regarding historical findings for laminin, we have to find who discovered laminin, the nomenclature, and the encoding gene for laminin. I'm not too sure if we can find some of those information in research articles, specifically the person/s who discovered laminin. We will have to ask Dr Hill. Also, I did a bit of research and found out that there are several chains for laminin: 5 alpha chains (LAMA1, LAMA2, ..., LAMA5), 3 beta chains (LAMB1, LAMB2, & LAMB3), and 3 gamma chains (LAMC1, LAMC2, LAMC3). I'm still trying to wrap my head around the difference of laminin chains to laminin isoforms. I might ask Dr. Hill about it tomorrow. Hopefully those information help you find articles for laminin.

--Z3461763 (talk) 00:07, 28 April 2015 (EST) Hey hey! So I made a brief introduction summarising what we have written in the articles. It would be ideal if we could all start summarising the articles as we are suppose to slowly... You'll notice next to different points in the introduction i've written 'structure 1' or 'abnorm 2' or 'function3' or 'cr4' - the letters correspond with the section on our wiki page the article was taken from and the number indicating which article it is in order of how it has been upload - please if possible remember which article is which so that when we reference we can reference directly. Also, I copy pasted my section of antibodies... everyone do the same? Since we are presenting on Thursday, if we have the antibody information up it will be good. :) Carl, I think the history information is a good idea as well. We should have it either before structure or function or after both... because Dr Hill always includes a brief timeline of the history :)

--Z3417843 (talk) 00:17, 28 April 2015 (EST) Yeah, I was thinking we should place the 'History' section after 'Introduction' but before 'Structure'. Based on experience, it's best to leave referencing at the end, when we're tidying up. If you guys are able to do it while writing the page then great! That'll save us time editing the page.

--Z3461763 (talk) 00:21, 28 April 2015 (EST)I agree! But for now i left that as the referencing as the introduction is bound to be edited and changed as we go along - just wanted something there for this week that summarises what is on our page so far. So just keep in mind what is article 1 - 4.... but then again its posted here in discussion so no biggie :)

--Z3462921 (talk) 09:25, 29 April 2015 (EST)== Lab 6: Immunochemistry==

1) Identify an antibody that can been used in your group's transport project: Laminin α-1 Antibody (M-20)

2) Identify the species deriving the antibody: Goat polyclonal IgG

3) Identify the working concentration for the antibody: 200 µg/ml

4) Identify a secondary antibody that could be used with this antibody.

The following secondary antibodies are recommended:

1. Western Blotting: donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminal Reagent: sc-2048.

2. Immunofluorescence: donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100- 1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

5) Identify a paper that has used this antibody.


--Z3417843 (talk) 23:00, 29 April 2015 (EST) Hi Rebekah! I saw this paper on pubmed (http://www.ncbi.nlm.nih.gov/pubmed/25888738) and I thought it might help contribute to your section of the project! Hope it helps!

--Z5050800 (talk) 12:32, 6 May 2015 (EST) Laminin structure clarified Laminin is a mosaic glycoprotein of the extracellular matrix (ECM) composed of different domains with different structures and functions [2]. According to H.K. Kleinman et al. laminin has multiple structures in different tissues due to variations in the number and type of chains. Basically, the laminin structure is composed of three polypeptides chains designated A, B1 and B2 which are held together in cruciform-like structure by disulphide bonds. H.K. Kleinman et al. explains the A chain has three globular domains at the amino terminus separated by three epidermal growth factor (EGF)-like repeats. The B1 and B2 chains are structurally similar but contain only two amino terminal globules and EGF-like repeats and lack the globule at the carboxyl end [3]. Furthermore, laminin is the major component of the basal lamina, the extracellular matrix which underlies all epithelia and surrounds muscle, peripheral nerve and fat cells. Consequently, laminin is related with cell adhesion, growth, migration, differentiation, neurite outgrowth and tumor metastases.[4]

--Z3461763 (talk) 15:16, 6 May 2015 (EST) Jose - I'm using this article to get some brief history on laminin but there is A LOT about the structure which you can use - http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544786/ :)

--Z5050800 (talk) 00:47, 7 May 2015 (EST) Hi Z3461763. More information using this article. I dont know why the number of reference is wrong here, in page discussion, But in work page is ok! :)

Laminin is a mosaic glycoprotein of the extracellular matrix (ECM) composed of different domains with different structures and functions [5]. According to H.K. Kleinman et al. laminin has multiple structures in different tissues due to variations in the number and type of chains. The laminin structure is composed of three polypeptides chains named A, B1 and B2 (nowadays α, β and γ chains, respectively) which are held together in cruciform-like structure by disulphide bonds. H.K. Kleinman et al. explains the A chain has three globular domains at the amino terminus separated by three epidermal growth factor (EGF)-like repeats. The B1 (or β) and B2 (or γ) chains are structurally similar but contain only two amino terminal globules and EGF-like repeats and lack the globule at the carboxyl end [6]. Furthermore, observations indicated that the chains form an asymmetrical cross-shaped structure, with a long arm of about 77 nm carrying a large globule at its end, and three short arms, two of 34 nm and one of 48 nm, each being terminated by a globular domain [7].The human genome encodes 11 genetically distinct laminin chains differing at the level of the amino acid sequences. However, the polypeptide chains in a cross-shaped pattern is conserved among laminin isoforms. [8] Finally, laminin is the major component of the basal lamina, the extracellular matrix which surrounds all epithelia, muscle, peripheral nerve and fat cells. Consequently, laminin is related with cell adhesion, migration, growth, differentiation, neurite outgrowth and tumor metastases.[9]

--Z3461763 (talk) 15:05, 7 May 2015 (EST) I'm just going to paste all the content I add to the page on here:


Laminin is a glycoprotein, found within the extracellular matrix [1], in many embryonic and adult tissues [2]. Laminins have a cross – shaped structure, formed by three short arms, representing the alpha, beta and gama chains and one long arm which is a globular domain that binds to cellular receptors. [3]. Laminins are the building blocks for cellular networks bridging the intracellular and extracellular compartments of the basement membranes [4]. They regulate the development and function of numerous tissues and organs [5], playing an important role in tissue homeostasis and maintenance. [6]. Laminins are also believed to play a role in cancer progression [7], as well as contribute to tumor dissemination and metastasis in advanced breast carcinomas as well as other tumor types [8]. Furthermore, laminins are believed to influence adipose tissue structure [9], have a role in the blood – brain barrier [10] and also regulate cellular processes, such as cell migration, differentiation and proliferation. [11]

Defects in laminin chains can result in: - Ocular diseases, such as in the development of the eye [12] - Epidermolysis Bullosa, a disorder resulting in structural weakening of the skin and mucous layer [13] - Muscular dystrophy, which is a group of disorders characterised by the weakening of the skeletal muscle [14]

Current and potential investigations into laminin include: - The regenerative ability of human adipose tissue derived from stromal cells, which is currently being investigated in the field of regenerative medicine [15] - The effects on individual truncated laminin chains in the absence of their normal partner [16] - And possible therapeutic solutions for advanced cancer patients [17].


In 1979, a large, non – collagenous glycoprotein was isolated from both an Engelbreth – Holm – Swarm (EHS) sarcoma and basement membrane producing cells. Following, it was purified in quantities sufficient for biochemical, structural and immunological characterization, and given the name laminin. Through biochemical analysis, it was discovered that the laminin structure consisted of three linked polypeptides, and given the names A, B1 and B2. Electron microscopy observations revealed that these three chains formed an asymmetrical cross – shaped structure. This cross – shaped structure consisted of a long arm of approximately 77 nm, carrying a large globule at it’s end, as well as three short arms, of which two were 34 nm and one of 48 nm, all terminated by a globular domain. Furthermore it was observed that between the centre of the cross and the ends of the 34 and 48 nm short arms, one and two additional globules, respectively, were present. Through further discoveries of various cells and tissues, cloning and automated sequencing techniques, genetically different laminin subunits in humans and other species were identified. This highlighted that the laminin molecule from the EHS sarcoma was not unique, but potentially, the part of a new protein family. In order to distinguish between the diverse members, the laminins were named and number in order of their discovery. The consecutive A, B1 and B2 chains were re – named with the Greek letters, α, β, and γ, respectively. As it was noticed that the sequencing of the subunits provided evidence for distinct polypeptide sequences at the amino acid level, they were named by the addition of numbers to the Greek letters. Today, Laminin isoforms are known by their chain compositions. The α1, β1, and γ1 chain is known as laminin 111. This chain is the prototype of the laminin family and is the best characterized laminin isoform. [1]

Another Article:

Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression [7]

Tumor microenvironments have become the focus of intensive research for cancer therapy. Parenchymal cells and their stromal components are separated by a basement membrane in normal epithelium. When a local host stroma is activated, the normal epithelium transitions into an invasive carcinoma. This malignant progression then prevents the normal functioning of the BM, causing the reorientation of its structure. As a result, the invasive tumor cells acquire a more metastatic phenotype, losing their epithelial characteristics. During this process, stromal cells release numerous microenvironment-influencing macromolecules, causing changes to the ECM. Fibroblasts, which play a prominent role in the pathology of solid tumors, are characteristic cell types in the microenvironment. The cancer – associated fibroblasts exhibit large quantities of ECM protein, proteases, within the reactive stroma. Matrix metalloproteinases (MMP’s) degrade the basement membrane and stromal ECM, influencing the production of malignant tumors. As a result, newly synthesized ECM proteins assist in the movement of motile tumor cells and the development of new vessels. In order to display an invasive phenotype, cervical carcinomas use the stromal MMP’s. MMP – 7 and MMP – 9 are induced into the cancer cells, made larger by tumor – stromal interactions. The stromal cells generate growth signals to the cancer cells by integrins, which are essential for the communication between cancer cells and tumorous stroma. It is this integrin communication that plays a big role in the cells survival, proliferation, migration and tumor invasion. The cytokine, TGF – β1, produced by fibroblasts is an important regulator of the ECM assembling and remodelling the ECM during cancer progression. Its known to exert a growth inhibitory action on epithelial cells, however this is lost in malignant transformation. This causes the growth factor of the ECM to convert from inhibitor to tumor promotor. This cytokine is activated through EC mechanisms such as proteases, thrombospodin – 1 and integrins. This exchange between tumor cells and fibroblasts is what influences growth factors, modifying the role they play on the tumor tissue. It was concluded that the tumor microenvironment played an influential role in the behaviour of cancer, with changes seen in the upregulation and redistribution of laminin – 1 in those cells which had undergone cancerous transformation, depositing into the BM and fibrillar connective tissue. It was also seen that there was a presence of activated myofibroblasts, which produce ECM, in the stroma. Laminin – 5 was also found to reside in the cytoplasm of cancer cells, in accordance with earlier findings. Copyright This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

--Z3417843 (talk) 16:53, 7 May 2015 (EST) hey guys! If any of you are planning on uploading a student image, you have to insert this in the summary for copyright "Copyright Beginning six months after publication, I (student number) grant the public the non-exclusive right to copy, distribute, or display the Work under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/ and http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode"

--Z3462921 (talk) 17:01, 14 May 2015 (EST) We should also set a date to meet up to fix the layout. Is the 28th too early or should we have it before the last lab of the semester (4th of june)? Just so we have a date to finish by.

--Z3461763 (talk) 23:55, 17 May 2015 (EST) Hey Bek, I replied earlier but the message never came up. I agree with you. I think just work on the peer review stuff up until about Saturday (including feedback etc) and then on Sunday / Monday tidy it all up.


  1. <pubmed>24550734</pubmed>
  2. <pubmed>24443019</pubmed>
  3. <pubmed>2534046</pubmed>
  4. <pubmed>2404817</pubmed>
  5. <pubmed>24443019</pubmed>
  6. <pubmed>2534046</pubmed>
  7. <pubmed>6795355</pubmed>
  8. <pubmed>PMC3544786</pubmed>
  9. <pubmed>2404817</pubmed>

Group 5 peer review

Informative, well referenced introduction – concise and gives a good overview into laminins. I don’t think it’s necessary to list the defects and current research here when there are sections dedicated to this near the end of the page. For the history section, it may be more eye catching if this text was split up into a timeline or flow diagram of some sort, but either way the text gives a thorough overview of the history which is good! Really good image created to highlight the structure, it’s simple and clearly explains the structure – but maybe would be good to refer to it when discussing it in the text. For this section, there is a bit too much text so maybe summarise it a bit, or maybe making both diagrams a bit smaller and wrapped around the text it’ll be sufficient to split up the big blocks of text! There are clearly lots of different laminins with different functions, therefore for this section it may be better to use a table to summarise their different functions in a concise manner, and maybe then go into detail on a few? Just below the abnormalities subheading I think it’d be good if you gave a really brief overview into the abnormalities. Well referenced information, I think it may be better if you could find some images to go with the text i.e. an image of someone with muscular dystrophy to go with the section? Some of the sections have their own reference list at the end but this would look less messy if there was just a large reference list right at the end of the project, but this is probably something you guys were planning on doing anyway! Overall, seems like you’ve got the written content sorted which is good and just need to make it a bit neater and cut down some of the large chunks of text.

Group 5 peer review

The introduction was very good, concise and succinct and it mentioned all of the important information. The way you guys have done referencing on this project is a little different to what I have seen in the other pages but I think that it is working well for you guys, but sometimes it does look a little messy? So maybe that is something you should consider. The history section might be more effective if it was done in dot point form and kept very brief. The information on the structure of laminin is quite extensive! It is a lot to get through as a reader. Maybe try to simplify some parts that are not quite as important? However, the diagram works very well in explaining the text and illustrating the structure of laminin. The functions section also looks very comprehensive and detailed and I think if you do in paragraphs it will too overwhelming and will look boring. Since you are discussing the different laminin functions, maybe tabulating what you find would be a more efficient way to discuss the function. It would be easier to read and understand for the reader. Illustrations are also lacking in this section, so definitely try and draw something or add an image if possible. The abnormalities section is good, it might again be more effective if you used some illustrations to highlight the clinical manifestations of some of these diseases. The current research section is also very very extensive, but I’m not sure it needs to be so detailed? Also the antibodies section at the end, I’m not sure if that’s supposed to be there or not. If not, I’m sure you guys will remove it. Overall, I think the project is looking very good. It just needs more illustration and the information needs to be more concise and presented in an easy to understand manner (dot points, tabulated).

Group 5 Project Review

Please don’t take this the wrong way. I’m not trying to be a jerk or put you down, just provide helpful suggestions. This page needs a lot of work. There’s a lot of content on the page, but most of it could be moved to another section, shrunk in length, or eliminated entirely. For example, why is there a brief, poorly-formatted list at the end of your introduction section? It seems completely out of place.

Let’s take the Function section as an example: why is there an exhaustive list of laminins? Could you not just give a more integrated, rounded overview of what laminin function is all about? What is their basic biochemical and cellular function? Perhaps start with something like “Laminins have diverse roles in the ECM, including smooth muscle contractility, structural support of the basement membrane, melanin synthesis…” A diagram should be used to explain this, and to break up the text a little.

There are text walls everywhere that are very hard (and extremely boring) to read on a computer screen. More visual aids are required and shorter paragraphs should be used. The actual quality of writing is good (except for where sentences are incomplete), but again, efforts should be focused on reducing the overall size of the page by making everything more concise.

Formatting needs a lot of work. You definitely, definitely need to compress your references into one, easy-to-keep-track-of section. It makes comfortable navigation of your page extremely difficult. You should also get rid of Dr Hill’s comment from 16 April. It’s cluttering your page! You need to make sure your pictures are formatted properly as well. There are copyright statements and references on the page that should be nested within the page for the image itself.

There’s a lot to be done to this page. It’s simply far too long to be comfortably readable, and is currently poorly formatted. My ultimate problem with it can be summarised with the observation that the Function section has 16 subheadings beneath it. That’s not something that the average undergraduate would be comfortable reading.

Group 5 Peer Review

I think you’ve covered an extensive amount of information in the content you’ve provided. It is very obvious that you’ve all contributed equally and exceptionally well, based on the amount of info and research.The layout of your topics and subtopic looks good it’s clear and concise. I only have a few minor suggestions and these include having only one reference list at the end of the page. I think that maybe your unsure of how to do that so here are some tips. Under your reference heading type in < references/ > (without the spaces) and all the references used will be shown under that one heading. It will add more flow to the page. Any additional referencing help can be found in the editing basics tab and then click on project referencing. I’d also suggest making your images slightly smaller because they are quite large at the moment and they sort of take over the content. Also your Copyright information should be only in the image, don’t need to have it on the page too. Another suggestion is to maybe consider some drawings, tables or collapsable tables their great for condensing info. Otherwise I think your page is pretty much set, just adjust some minor formatting things here and there and your good. I think you’ve done a brilliant job, great work everyone !! ☺

Group 5

Group 5 is doing their project on Laminins. Upon the first look of their project page, it looks like it is HIGHLY disorganised. The references are separated for each section, and when I try to organise the information I'm reading, I feel like the categorising is just hard to understand. Also, the function section is just filled with a huge list of laminins, which makes me wonder if such a long list is needed, or if all of them are just as important and needed to be covered. To be honest, it is probably a better idea to take a few significant laminins and concentrate the research and article around them. Quality information is better than quantity, and maybe if you really must cover all of them, a table will help illustrate a summary of the information. Also try to break up some blocks of text into smaller paragraphs or under subheadings because it makes it easier to read, but thats just an opinion. For the diseases section, it seems like the information is categorised by papers regarding the disease. A suggestion would be to try and integrate some of the information and generalise it, because you run the risk of repeating the same information in the different papers that you cover. Some more images can be used to break up the text. Apart from all of that, it was really interesting reading about laminins. The organisation of the page could be better, but if these changes are considered their page will be much more welcoming and easier to the eye :) Good job! [edit]

´´Group 5 Peer Review´´

Guys, your project is pretty good. You have found a lot of information. However, there should be a lot of improvements regarding organization. The great amount of information you found – or tried to find – was not well structured in the page, which leads to an incomplete understanding about laminin. For example, talking about the function of the many laminins individually gave a messy look to the page. The introduction part seems to contain information that was repeated in other sections. I think you guys should improve this section, which is one of the most relevants, in my humble opinion. Furthermore, the idea of putting the references right after each section made the page look ugly, and it also like ‘’breaks’’ the flow of the page. The structure and the history part are very good! I would not change anything in these parts, as the text is comprehensive and rich.

The abnormalities part should have more pictures, the great amount of text makes the reading tiring and hard, although the good information provided. But the biggest problem resides on the function part: what about trying to reduce the amount on ‘’laminins’’ to focus on the most relevant ones? I know you guys want to provide as much information as possible, but it can lead you to confusion sometimes.

group 5 peer review

Group 5, overall the presentation of your project seems quite messy and unorganized. Some topics are repeated along the presentation, like the function and defects/abnormalities sections and that could be cut off. The referencing below each heading breaks completely the fluidity of the project, I am sure you guys are going to fix it. The structure heading is all right, well explained and with some good pictures. However, the function topic is too long and incomplete, maybe you should just focus on the 3-5 main laminins. Abnormalities section looks pretty good, with punctual and clear information. Current research is too long, almost a third of the overall, maybe some information could be better summarised. If you focus on clarity and on simplicity this project will become a very good one.

Group 5: Pros: There is a good understanding of the topic area – this is shown through the amount of information provided on your page. You guys are really researching your topic well – there are lots of subheadings with paragraphs of information. Cons/improvements: The page seems all over the place at the moment – you have references under each section (there should only be one reference located at the bottom of the page). The information needs to be cut down and made more concise so you guys can maintain a good flow to what you want to teach about your topic. You guys should really utilise more pictures and diagrams as well as a hand drawn diagram.

Group 5 peer review

By having a general look on the page, I could say that the project is very disorganized. The references are separated according to each section, while they should be all in one at the end of the page.

Besides that, the page presents a wide list of laminas, making me ask if it is so important to talk about all of these instead of choosing the most important ones.

When reading the abnormalities section, it seems that the information is not clear enough to provide a fully understanding. I think there is too much text and lack of images, making it harder to comprehend.

The current research section is certainly of great importance, but I reckon the text should be summarized in order to clarify its message and broke down with images so that the page looks more interesting and attractive.

Overall, the page has the necessary content. However, some editing is still necessary in regards of organization and important information.

Peer Review

The introduction is provides a good idea what the page is about, speaking generally about each topic. However, I don’t think the lists at the end of the introduction are in the right subheading. I’m assuming all the references are going to be compiled at the end of the page in the final editing process. I personally don’t see the point of doing it this way since it just makes it look messy and then you are going to have to fix up all the repeating references since its harder to tell what the other people have used.

The history section has been well done in my opinion, maybe add a timeline to quickly summaries the history and give a balance between visual and written media?

The structure section is very detailed and informative however it just seems like a slab of text which makes it very boring to read. I think you guys need to add more visual media such as pictures or videos to make it more engaging.

I do not like how you have set out the function section at all (no offense). I think you need to condense the subheadings into a more general one because it just looks silly listing all the different types and will become just a wall of text, which would not be enjoyable to read at all. If it were me I’d focus on the general function of laminins then go into a few of the main types.

Again the abnormality section is detailed but it just seems like slabs of text. Maybe move the pictures to the right to make it more interesting instead of slab of text then a picture.

Overall, the page is well on its way with a lot of content which is good because now you can cut back and make it more appealing. You definitely need to add more images to make your page more engaging because at the moment it is very boring to read. Lastly make sure all your images are reference correctly and containing the copyright information!. The copyright information for one picture is on the page for some reason when it should be in the pictures page. Other than that good job! :)

Group Review 5

The paragraph section of the introduction read well and presented the required general information with nice amount of citation something usually lacking in an introduction. The dot points seem bland and out of place it would be advised to make them flow on from the paragraph. The formatting of the references has obviously been done list at the bottom individual students sections which is understandable, just make sure in the final product the referencing is compiled at the bottom of the page to allow better presentation of content. The only places which might need more references to back up the content is the second half of the history section and the abnormalities/future research section, it is understandable to have only a few references for each abnormality/future research because of limited information available but it should be more than just a single reference. The use of images are sparse compared with written content try to find relevant images for the following sections; history could have a graph showing papers published per year on laminins, for function a diagram of one of the more important laminins interacting with the basement membrane would be a nice inclusion also more images in the future research would be preferable. The images presented in the structural and abnormality sections are sufficient in number and relate well to discuss content.

The amount of content is quite vast you have obviously done extensive research; the only place in which it is lacking is for function of separate laminins which are standing as lone headings without content. I would advise that you only address the most significant laminins and remove the ones which less research or integrate many of similar function into a single paragraph. Some of the information presented at the end of structure should be removed it focuses to heavily on the function of the laminins resulting in overlap with the functions section. You can include some reference to function but not to the extent presented in the final two paragraphs of structure. The contents displayed in Future research are too extensive making the walls of text uninteresting, to solve either cut down information or utilise more visuals to make it more entertaining. In the later sections of the project you often refer to previous studies, examples of these previous studies would show you know more of the background to the future studies/abnormalities.

Overall your page is quite well put together just changes to formatting and making the page more visually pleasing is required.

Group 5 Peer Review

Overall, the webpage is very informative. It is evident that significant research was conducted on this topic in all areas of discussion. Initially, I became overwhelmed with the amount of text on the page. There was a lack of interesting visual aids, photos and other types of media, to keep the webpage interesting. Also, due to the large amount of information written in paragraphs, reading became tedious. For the history section, it may be best to break up the paragraphs into bullet points which include only the most significant information. Changing up the structure of which the information is presented will give your page visual interest.

I also noticed the references listed at the end of each section. These should all go at the end of the webpage so that all references are presented together. Re-reading for grammatical errors will also make the page more professional.

I liked the images that you have included on the page, however, the photo in the structure section should be located directly beside the information that it is referencing for easy viewing, rather than below the text. In addition to this, the Image section does not seem appropriate for the webpage. I think that you were probably going to change this, but anyway, the copyright should also not be located directly on this page. It should be embedded within the photo, so that when you click on the photo, the copyright will be listed along with the original figure legend. This photo should also be accompanied by text that is not the legend, providing a reason for the use of the photo.

I really liked that the many forms of laminin were included in the page along with their functions. This information did seem overwhelming as a list, so putting the listed forms of laminin into a pop-up table would be a perfect addition to your page. This would also be useful in providing a reference for when you specifically talk about these laminin types in the abnormalities section. You webpage is on the right track! I really appreciated all the time put into providing detailed information. This is definitely the strong point in your work.

Group 5 Peer review

First of all, the references need to be moved to the end of the page. it is an eyesore and makes the page hard to navigate. Introduction is very consise, perhaps too much so considering the amount of citations used. The reference to defects should be moved down to the abnormalities part of the project. History section needs some more citations and perhaps change the format of this part to less that a block of text. History should read more like a timetable. Dotpoints, dropdowns, tables, anything to make it easier to grab the important information of of this bit quickly. With the amount of text you have, having only 5 pictures, makes it a very tiresome read. adding more pictures to break the tedium is appreciated. the whole sections with only one citation each makes it like like none of the information has been cross referenced and makes me dubious to the validity of what's presented. Some more work needs to go in to making your Contents table more accessible for Navigation. there is just too much there. Perhaps downgrading all of the titles would allow for that. Finally, make sure to review your own page prior to submission to remove or rectify any notes you've placed for yourself. There is lots of information that you've got to work with. Make some effort to make it look good formatting wise and you've got a killer page here. Great work.

Group 5 Peer Review It's clear that this page has a huge amount of detail, which is certainly not a bad thing. But overall, the page is largely disorganized. I can't judge what you consider important or non-important, but personally, the inclusion of such a massive list of laminins is perhaps not the most effective thing. I highly doubt anyone (specifically Mark, who will mark the assessment), will read through every single laminin and what it does. I'd probably choose around 5 most important types/variants of laminins and explain them. But there's simply too many types to have to list them all. The main issue though is the organization of the page. The references should really be fixed up so that they all fall to the bottom of the page. I'm sure your group will fix this with time, and it does look like there's been considerable research going on as the content and references certainly aren't lacking.

Group 5:

This project page is coming along pretty well, just make sure that you guys watch out for grammatical errors. There is great information present in the history section but I think it would be good if you guys explicitly stated the years that these advances were made. Also, there is a lot of text in the structure section, which is good, but I think that it would be more appealing for the reader if you guys had images separating the different paragraphs so it doesn’t look too overwhelming. This is the same for the current research section. In addition, I think it's great that you guys are writing the function for so many different types of laminins but a lot are still blank so maybe it would be better if you guys did a general overall function for laminins and then include specific examples?

Moreover, I suggest the “image” heading is changed to describe specifically what the image is, and I think it would be good to get images to accompany all the abnormalities as well. Also, I don’t think the copyright information is required to be present on the project page so you may want to double check that. Furthermore, it may be worth adding a glossary at the end of the page, and to make changes to the antibodies section because as it is currently, I am unsure of what is specifically being said here and hence the purpose of its inclusion. Lastly, don’t forget to compile all the references throughout the page in a final list at the end of the page.

Group 5

Your page have a lot of information, which is good, shows that you worked hard on your searchings. I think you should format your page before the submission, put all the references in the end of the page, leave spaces between texts and organize the images. The images that were used are very good to illustrate the page, but some of them dont need to be so large, you could try to decrease its size and fix them with the text, left or right. I also see there's some information missing on the function section, but maybe is possible to summarize the information so your page won't be so long. Congratulations!

Group 5 Peer Review

The laminin introduction is well done and different to the other wikis. There’s an immediate link to ECM – good job. There may be too much information here, as you seem to overlap it in the structure section again – consider reviewing this. History section would be better as a timeline or overall, with less information and just the key points.

There needs to be a lot more referencing in the structure section. The images however are very well done and further information about the image is provided in the image file which is good. Be sure to add an image produced by a student, I’m not sure if a student did the image ‘Laminin Structure’ though… If yes, make this clear in the referencing of the image.

Function section needs a lot of work. Chose only a few laminin to present in your wiki as there is way too much information for us to read if you include all of the ones you currently have listed.

More images in disease section and shorten the information. Your wiki has so much disease information that it looks like this is the focus! – review this. Consider putting this information in a table as you don’t have one in your wiki yet. Also shorten the anitbodies section and focus on one or two.

Your referencing is also different to the other wikis, I’m assuming you’re leaving it like this for now and changing it later? It’s a little too messy and unprofessional like this. Fix up the current in text referencing you have and make sure you’re not breaching plagiarism by just putting slabs of information in. There are some grammatical errors so be sure to go back and fix them up.

Would an embryogenesis section prove useful and add to your page?

I don’t think this is as unorganized as everyone thinks – you have good headings and sub-headings (minus the function section which needs to be shortened with a few laminins) and I think you can see how your project will look in the end and what you need to include to inform your readers about your topic. Keep at it and take on board what everyone is saying. Heads up. Haterz gon hate. Lol

Group 5 Peer Review

You guys have done a mammoth amount of work and the page looks really good. I do have a few points for you though. Your contents is the first thing i see on your page and its a mess. Hopefully as you refine your page, this comes into order. An image in your intro would really help break it up and give me something to look at other than text. the history is also a bit bland. Im not sure what it needs but maybe an image or a change in format would help make it more appealing.

The references situation is really weird. I think all the groups started out like this but considering how late in the semester it is, its probably a good time to move them. Also another oddity is the copyright you have all included after your images. This should be included on the actual image page and should have been done when the image was uploaded. Its unnecessary to have it on the project page. Also a point of misunderstanding must have occurred in the antibody lab we had, i believe this should have been included on your individual pages and not on the project page. Clarify with Mark if need be but it looks weird where it is.

The overall structure of the page is good and concise allowing for an easy read of your information. Each section is really well written and heaps of effort has clearly gone into them. The structure section is probably the most complete and it has good images that have been used really well. The Function section underneath it is however incomplete. This isn't really a concern as I'm sure you have more to add here but I'm a bit worried about the layout of the section. a separate paragraph under each heading would not be the best way of presenting the information. Maybe discuss with the group and brainstorm how best to do this. You guys have done a great job, good luck with the rest of it!

Project 5 Critique: I thought your introduction was really good, a very nice overview of your topic, but you may want to consider outlining the rest of your project page within your introduction stating what you will and will not be talking about in regards to your topic. I’m also not sure if your bulleted list works in your introduction or not, to me it just seemed a bit out of place. You may also want to reconsider your referencing format I found it to be disruptive to the flow of your project. I liked the information you have in your history section as well, very thorough, but you may want to try to organize it in some fashion, maybe with two sub headings. Similarly, your structure section has wonderful information , and the image really makes the section complete, but in order to get through all of the text a couple of sections within structure would be helpful organization wise. The section “image” doesn’t quite make sense, but the images within that section are very helpful for understanding structure. As far as the specific lamini functions, you may want to keep the sections on major laminins that have a considerable amount of information, and then the laminins that have one line descriptions could be formatted into a table. Your abnormalities section seems to be a bit inconsistent with images, and with the formatting there seems to be quite a bit of white space. I found your current research section to be very thorough, I personally wouldn’t have read through all of it if I didn’t have to, you may want to consider compacting that section a little. But overall the project seems to be coming along pretty well.


At first glance, the page is very overwhelming especially having multiple references sections for each heading. The introduction is too long and the dot points underneath the paragraph show that it is still unfinished. The information can be summarised better to give a broad overview of laminins. The history and structure sections are also very extensive, and the information can be organised better under subheadings that will break up the information.

The function section looks like an extensive list of individual laminin types and their functions. Although it is incomplete, the amount of detail written about just one type of laminin should be reduced and summarised better. This can be tabulated and written in dot points to better present the information to make it easier to read because there are so many different types of laminins. For the abnormalities section, the information can be summarised more concisely. Also, the title of the research paper should be removed and the paper should be referred to in the text. The current research section should also be summarised, as there is a large amount of text under each subheading.

The images should have been added to wikipedia correctly and the copyright information should not appear on the main page. References should appear as a single list, and I believe it would be easier to view the page as a whole. The subheading style should remain consistent throughout the whole page. The subheadings under abnormalities and current research have lines under the subtitle and other sections do not have this. Some images are unnecessarily large and more pictures are needed. Tabulating the antibody section would better the presentation of this section. Overall, there is evidence of extensive research, but the group should work together to better organise and present the page. It currently does not look like a unified group project.

Group 5

Having a quick read through the project, there seems to be an overload of information in all the sections making the wikipage look clustered and hard to access. It would look much more organised if the references at the end of each section were moved to the end of the project rather than being where they are currently. The Introduction section touches on the basics of structure and function, however it would be nice to tell the readers about what your group project will be focusing on throughout the duration of your page.

There seems to be overwhelming information in both the History and Structure sections, which can be fixed by adding subheadings to break down the information further or just to reduce the information in these sections (especially with the structure section which just seems like a wall of text). Summarising the information would be much easier to read. For the functions section, you have broken down Laminins into a whole list of different types and their different function/structures. I suggest making use of a table or even dot points to organise the section better, as well as summarising the information for each Laminin due to the fact that there are so many different types; thus much more information to be added. The ‘Current Research’ section as well as ‘Abnormalities’ can be simplified in the amount of information that is placed within it.

There are some formatting errors that I can see through the page, such as the images not being added correctly (the copyright information should only appear when you click the image for more information, not on the page itself), as well as the reference list being scattered throughout the project (put it at the end of the project. Each different section has a different format of how the text is laid out as well as varying sizes of text, this makes this project seem like it was individuals just placing information on a wikipage rather than a group assignment. This can be fixed by setting a uniform format that everyone from your group will use throughout the page. Great job on the amount of information that you guys have obtained! Just the formatting and you guys are fine!

Group 5: Laminin

Good introduction to your page. I noticed right off the bat that you need to fix the formatting of your references and include them at the bottom of your page. This history section is well written and provides some interesting information.

The structure section is also well written and detailed but it you have used some images to breakup a large body of text hear. It would be neater if you were consistent with the caption formatting between the two images. The function section has obviously has a lot of research behind it. Well done on creating such a meticulously researched body of text. I am aware that you were told to include all 20-something types of laminin so maybe you could come up with a more creative way of presenting such a huge slab of information. I think you might benefit from selecting a few key laminins to leave in the body of the text and then place all the others in a hidden table so that if your audience wants to see more they can click on it to reveal the rest of the text. Maybe the inclusion of some images might help break your text up some more. Nevertheless, you should be proud of your effort to provide such a detailed resource.

The same can be said for the abnormalities section as it appears as another large body of text. Regardless of this fact, you should be proud of the effort you put in to creating a very detailed descriptions of your abnormalities. You may be able to fix this by including more images and then adding some of the more detailed text to the image descriptions so that people can click on the image to see more. It is obvious hat you have all done a lot of research in order to create these detailed blocks of text and when you add the finishing touches to make the page more visually appealing during the editing phase your page will be something to be proud of. Well done and I look forward to seeing your final product.

Group 5: Laminin

Your group project page contains an enormous amount of information which is clearly reflective of the amount of work that has been put towards your project so well done. There is a good amount of images on your page but perhaps to keep it in balance with the amount of text on your group page consider uploading more visuals. Some of the images could be reduced in their size as some of them take up most of the space on the screen.

Your references are in a couple of places at the moment, under each heading. I think it would be neater if you compiled each reference list and placed it at the bottom.

Underneath some of your images is the copyright information shown on the group project page, I think that information is already on the image summary and you do not need to include there.

Overall, your group project page is really good, well done guys!


Hey all! I've collated all the above peer reviews and have listed everything that needs to be changed/ modified on our page. It would be ideal if we could all have our sections done by Sunday and then we can see who can work on what else once that is done. Any questions/ problems let me know! Thanks guys, good luck :D


Include what we will and will not be discussing on our page

More of a broad overview

Get rid of the dot points / list is not good!

Information overlap with structure


Information needs to be summarised, possibly include subheadings

More references for the second half of the history section

Graph showing the history of published papers


Possibly less info/ dot points / dropdown table

State years


Information needs to be summarised, possibly include subheadings

Possibly find a video demonstrating structure (only if you can find one)

More references for this section

Student image (the image you created), needs to be made obvious on the image page

More images to break up text

End of this section overlaps with function (maybe Carl should take this information?)

Have images on the sides, with text wrapping


Information needs to be summarised

Change the presentation of the laminins; table, dot points,

Possibly only address a few laminins

Generalised overall function and then the specific examples

Diagram/s with laminin interacting with BM

Avoid repetition


Information needs to be summarised / integrated

Title research removed and referred to in the text

Possibly tabulate this section

More references for this section (they suggested more than a single reference)

Images don’t fit/ work with what is being said

Section needs to be refined (not clear enough)

More images wanted – they were suggesting you have an image of the abnormality which you can click on and read about

Examples of ‘previous studies’ which referred to, to gain a better understanding

Avoid repetition

Current Research

Information needs to be summarised

More references for this section (they suggested more than a single reference)

More images to break up the text

Examples of ‘previous studies’ which referred to, to gain a better understanding

Avoid repetition


Looks out of place


More images

Reduce image sizes


Remove copyright off the page

Caption formatting between the images

Uniform formatting on the page (i.e. headings, subheadings)

Get rid of the ‘image headings’ (I think this is in the structure section)

To much about disease on our page (apparently)

Embryogenesis section may be needed?

Grammatical errors


They don’t like that we have whole sections with only one reference

Break up the large paragraphs of text with images

Hand drawn diagram (Chala has idea for this unless anyone else has any ideas)

--Z3417843 (talk) 21:36, 23 May 2015 (EST) Thank you so much Chala for collating all the suggestions from the peer reviews. Let's get this done guys!

--Z3461763 (talk) 23:50, 23 May 2015 (EST) No problem :) So just an update - history completed, antibodies completed, header created/ inserted - Jose summarising structure, Carl researching/ summarising function... - still aiming to finish tomorrow :) That way we can refine and edit until Thursday :D Thanks all!

--Z3417843 (talk) 16:58, 24 May 2015 (EST) Hey guys! I'm planning to do an overall read of tonights page and ill be annotating as I go. So, if you could all please not do any editing while I'm reading it, it'll make things easier for all of us. :)

--Z3417843 (talk) 01:50, 25 May 2015 (EST) I've done the overall read of the page. So far, everything looks good. I've changed terminologies e.g. basement membrane into BM throughout the page. I've also corrected spelling mistakes to make it consistent. Jose, you'll have to summarise your parts more and try to use dot points where you can. Your part looks a bit chunky. Bek, I changed the headings of your section to make it look neater in the contents box. I hope you're using more than 1 article for each of the diseases. I would say 4-5 articles/disease is a good amount. That should give you enough information to write about the mechanism of laminin relating to the disease in enough detail. Chala, your section is fine. All I did were spelling corrections. As for functions, I will have to fix my detailed information for the 5 laminin isoforms I chose. I'm also gonna try and find a video relating to the function of laminins. Feel free to find videos for your sections as well. That's all for now. :)

--Z3461763 (talk) 01:16, 26 May 2015 (EST) Hey hey, i've added another article (one more to add after this), plus a list of articles - i may even have a link to the most recent articles and will be adding pictures. I've made my section colourful - will add the colour codes to the other sections once we are done. Also in the google document i've set up a table titled 'glossary' - please look for words in your section that need to be defined - list them there, define them (if you can, if not we'll all contribute) and that way we can copy paste directly into a glossary on the wiki. Also can you all please list/ copy paste what you think needs to be in the introduction so we can work on it? thanks all :) our page is looking good!

--Z3461763 (talk) 13:03, 3 June 2015 (EST) LADIES AND GENTLEMEN WE ARE DONE!