Difference between revisions of "File:Intermediate filament organization cartoon.jpg"

From CellBiology
 
Line 1: Line 1:
FIGURE 1 | Intermediate filament organization in metazoan cells.
+
==Intermediate filament organization in metazoan cells==
 +
 
  
 
In the hypothetical epithelial cell depicted, the three key filament systems of the cytoskeleton, microfilaments (MFs), microtubules (MTs) and intermediate filaments (IFs), are connected to each other by dimeric complexes of plakin-type molecules such as plectin and BPAG1. In addition, a multitude of MT-associated proteins and actin-binding proteins, including motor proteins, are thought to increase the complexity of these interactions. IFs are coupled to IF-anchoring plaques of cell–cell junctions (desmosomes) by desmoplakin, a prototype plaque molecule (plakin), and to those of cell–matrix junctions (hemidesmosomes) by plectin and BPAG1. The transmembrane proteins that mediate the contact with the neighbouring cells and with the extracellular matrix (ECM) are desmosomal cadherins and integrins, respectively. IFs are furthermore coupled to the outer nuclear membrane (ONM) by plectin and nesprin-3, whereas nesprin-2 anchors the MF system to the nucleus. On the inner side of the nuclear envelope, a layer of nuclear IF proteins (lamins) is attached to pores and inner nuclear membrane (INM) proteins as well as to chromatin. The membrane proteins of the INM might be linked to those of the ONM and thereby provide a mechanical continuum reaching from the ECM to chromatin. The number of newly identified INM and ONM proteins is increasing steadily and is represented here only in a schematic manner. ER, endoplasmic reticulum; MTOC, microtubule-organizing centre; NPC, nuclear pore complex.
 
In the hypothetical epithelial cell depicted, the three key filament systems of the cytoskeleton, microfilaments (MFs), microtubules (MTs) and intermediate filaments (IFs), are connected to each other by dimeric complexes of plakin-type molecules such as plectin and BPAG1. In addition, a multitude of MT-associated proteins and actin-binding proteins, including motor proteins, are thought to increase the complexity of these interactions. IFs are coupled to IF-anchoring plaques of cell–cell junctions (desmosomes) by desmoplakin, a prototype plaque molecule (plakin), and to those of cell–matrix junctions (hemidesmosomes) by plectin and BPAG1. The transmembrane proteins that mediate the contact with the neighbouring cells and with the extracellular matrix (ECM) are desmosomal cadherins and integrins, respectively. IFs are furthermore coupled to the outer nuclear membrane (ONM) by plectin and nesprin-3, whereas nesprin-2 anchors the MF system to the nucleus. On the inner side of the nuclear envelope, a layer of nuclear IF proteins (lamins) is attached to pores and inner nuclear membrane (INM) proteins as well as to chromatin. The membrane proteins of the INM might be linked to those of the ONM and thereby provide a mechanical continuum reaching from the ECM to chromatin. The number of newly identified INM and ONM proteins is increasing steadily and is represented here only in a schematic manner. ER, endoplasmic reticulum; MTOC, microtubule-organizing centre; NPC, nuclear pore complex.

Latest revision as of 09:40, 4 April 2011

Intermediate filament organization in metazoan cells

In the hypothetical epithelial cell depicted, the three key filament systems of the cytoskeleton, microfilaments (MFs), microtubules (MTs) and intermediate filaments (IFs), are connected to each other by dimeric complexes of plakin-type molecules such as plectin and BPAG1. In addition, a multitude of MT-associated proteins and actin-binding proteins, including motor proteins, are thought to increase the complexity of these interactions. IFs are coupled to IF-anchoring plaques of cell–cell junctions (desmosomes) by desmoplakin, a prototype plaque molecule (plakin), and to those of cell–matrix junctions (hemidesmosomes) by plectin and BPAG1. The transmembrane proteins that mediate the contact with the neighbouring cells and with the extracellular matrix (ECM) are desmosomal cadherins and integrins, respectively. IFs are furthermore coupled to the outer nuclear membrane (ONM) by plectin and nesprin-3, whereas nesprin-2 anchors the MF system to the nucleus. On the inner side of the nuclear envelope, a layer of nuclear IF proteins (lamins) is attached to pores and inner nuclear membrane (INM) proteins as well as to chromatin. The membrane proteins of the INM might be linked to those of the ONM and thereby provide a mechanical continuum reaching from the ECM to chromatin. The number of newly identified INM and ONM proteins is increasing steadily and is represented here only in a schematic manner. ER, endoplasmic reticulum; MTOC, microtubule-organizing centre; NPC, nuclear pore complex.

FROM THE FOLLOWING ARTICLE: Intermediate filaments: from cell architecture to nanomechanics Harald Herrmann, Harald Bär, Laurent Kreplak, Sergei V. Strelkov & Ueli Aebi Nature Reviews Molecular Cell Biology 8, 562-573 (July 2007) doi:10.1038/nrm2197

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current12:48, 7 May 2009Thumbnail for version as of 12:48, 7 May 2009555 × 565 (124 KB)Z3295026 (talk | contribs)In the hypothetical epithelial cell depicted, the three key filament systems of the cytoskeleton, microfilaments (MFs), microtubules (MTs) and intermediate filaments (IFs), are connected to each other by dimeric complexes of plakin-type molecules such as
14:50, 7 April 2009Thumbnail for version as of 14:50, 7 April 2009555 × 565 (124 KB)S8600021 (talk | contribs)FIGURE 1 | Intermediate filament organization in metazoan cells. In the hypothetical epithelial cell depicted, the three key filament systems of the cytoskeleton, microfilaments (MFs), microtubules (MTs) and intermediate filaments (IFs), are connected to

Metadata