Lecture Overview

- Microfilaments
 - Structure, function and regulation
- Actin
 - Motility
 - Adhesion, focal adhesions
 - Actin binding proteins, myosin
 - Muscle actins
- Microfilament diseases
- UNSW Cell Biology

Microfilament References

- Medline (April) References
 - Actin 62,901 (08)
 - 58,545 (07) 54,273 (06) 50,096 (05) 46,353 (04)
 - Actin Binding Proteins 63,038 (08)
 - 59,067 (07) 54,711 (06) 50,620 (05) 46,945 (04)
 - Myosin 30,500 (08)
 - 29,099 (07) 27,683 (06) 26,286 (05) 24,924 (04)
- Textbooks
 - Essential Cell Biology Ch16 p527-542
 - Molecular Biology of Cell Ch16 p521
 - Molecular Cell Biology Ch19
Cytoskeleton Filaments

Structural Systems

Microfilaments
- shape
- motility
- contractility
- cytokinesis
- transport
- compartments

Microtubules
- transport
- karyokinesis

Intermediate Filaments
- compression resistance

Actin functional challenge

Diversity function
- dynamics
- organisation
- mechanics

Spatial specialisation
- pool sizes
- function

Evolution
- simple principle

Microfilaments
- Twisted chain 7 nm diameter
- Compared to MT
 - Thinner, more flexible, shorter
- Point in same direction
- Different organisation in different cellular regions

© Dr M.A. Hill, 2008
Actin Microfilament Formation

- Globular actin monomer (g-actin) polymerise to Filamentous actin (f-actin)
 - Cells approx 50:50
 - Monomer can add to either (+ or -) end
 - Faster at + end
 - Actin-ATP hydrolysed (ADP) following addition
 - Destabilises (like MT)

Nucleation/Elongation

- Nucleation
 - Two actin molecules bind weakly
 - Addition of a third (trimer) stabilizes the complex
 - Forms a "nucleation site"
- Elongation
 - Additional actin molecules form a long helical polymer
 - Initial period of growth
 - Then equilibrium phase reached
- Dynamic Equilibrium
 - Elongation -> Depolymerization controls filament length

Actin Types

- 6 Mammalian actin types (isoforms)
 - All are 43 Kd Protein
- 2 cytoskeletal isoforms in all non-muscle cells
 - Beta (β) 7p22-p12
 - Gamma (γ) 17q25
- 4 muscle isoforms in different muscle cells
 - Alpha (α) skeletal
 - Alpha (α) cardiac
 - Alpha (α) smooth
 - Gamma (γ) smooth

Actin Protein

- Conserved in mammals
- Different ratios (β:γ) in different cell types
- 374aa, 43 kD protein
- 4 aa difference between beta and gamma
 - at N- terminal
- Highly expressed gene
 - Promoter used in gene transfections

© Dr M.A. Hill, 2008
Actin Isoforms are Functionally Distinct

\[\beta^- \text{ vs } \gamma^- \text{actin in myoblasts} \]
- \(\beta^- \)-actin promotes cell spreading and stress fibres
- \(\gamma^- \)-actin inhibits cell spreading and stress fibre formation
- \(\beta^- \) and \(\gamma^- \)-actin have different preferences for types of tropomyosins

Cell Movement

- Whole or part of cell
 - Amoeba, neutrophil, macrophages
 - Neuron processes
 - Axon, dendrites
 - Common structures
 - Contraction
- Intracellular transport

Motile Structures

- Leading/Trailing Edge
 - Extension/retraction
 - Actin nucleation
- Lamellipodia
 - Sheet-like extensions
- Filopodia
 - Thin protrusions
- Integrins anchor to ECM

Cell Migration

Image: MBoC Figure 16-54
Adhesive Functions

- Cell signalling
 - Modify cell cytoskeleton
 - Activate intracellular signalling pathways
 - Cell motility
 - Note adhesion is covered in detail in later Lecture

Adhesion Junctions

- Adherens Junctions
 - microfilaments anchor the plaque that occurs under the membrane of each cell.
 - plaques not as dense
 - also occur as hemiform

Adherens Junctions

- heart muscle, layers covering body organs, digestive tract.
- transmembrane proteins
- Cadherin

Adhesion Junctions

- Adherens (cell-cell)
 - cadherin (E-cadherin)
 - Links to cadherin in neighboring cell
- Adherens (cell-matrix)
 - Integrin
 - Links to extracellular matrix

© Dr M.A. Hill, 2008
Focal Adhesions

Adhesive Signalling

Actin Signaling

- Rho
 - Family of small GTPases
 - Rho, RAC, CDC42
 - Form different actin structures
- Wasp
 - Wiskott-Aldrich syndrome protein
 - A downstream effector
 - Transfers signal from tyrosine kinase receptors and small GTPases to actin cytoskeleton

Actin Filaments
Tropomyosin slows ‘off-rate’

- Increase tensile strength

Actin functional challenge

- Diversity function
 - dynamics
 - organisation
 - mechanics
- Spatial specialisation
 - pool sizes
 - function
- Evolution
 - simple principle

Distinct subcellular sorting of cytoskeleton Tm isoforms

- Tm1,2,3,5a,5ab,6
- Tm1,2,3
- Tm5a,b
- Tm5NM2
- Tm5NM1,2
- Tm5
- Tm5NM1

Isoforms Define Specific Functional Properties of Actin Filaments

- Spatially segregated filaments contain different tropomyosins.
- Spatially segregated filaments have different functional roles in the cell.
Small GTPase Regulate the Actin Cytoskeleton

- Rho: Stress Fibres
- Rac: Lamellapodia
- Cdc 42: Filopodia

Small GTPase © Dr M.A. Hill, 2008 Slide 30

Rho activation mimics Tm5NM1 over-expression

Rac activation mimics Tm3 over-expression

Cdc42 activation mimics TmBr3 over-expression

Actin Binding Proteins

- Regulate polymerisation and create different structures
 - Monomer binding protein
 - Sequester
 - Release
 - Polymer binding proteins
 - Bundling
 - Cross-linking
 - Severing
 - Contracting

Actin Binding Protein Interactions

© Dr M.A. Hill, 2008
Actin Binding Proteins

<table>
<thead>
<tr>
<th>Function of Protein</th>
<th>Example of Protein</th>
<th>Comparative Shapes, Sizes, and Molecular Mass</th>
<th>Scheme of Interaction with Actin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strengthening function</td>
<td>Actin filament</td>
<td>Tube-like structure</td>
<td>Actin monomer</td>
</tr>
<tr>
<td>Rho family</td>
<td>Actin filament</td>
<td>Star-like structure</td>
<td>Actin filament</td>
</tr>
<tr>
<td>Focal adhesion</td>
<td>Actin filament</td>
<td>Spoke-like structure</td>
<td>Actin filament</td>
</tr>
<tr>
<td>Migration machinery</td>
<td>Actin filament</td>
<td>Ring-like structure</td>
<td>Actin filament</td>
</tr>
</tbody>
</table>

Actin-related proteins (Arp2/3)

- Arp2/3 protein complex
 - Control of polymerization
 - Lamellipodia localization
 - Human complex has 7 subunits
 - ARP2, ARP3, ARC41, ARC34, ARC21, ARC20, and ARC16
- Listeria monocytogenes
 - Induce actin polymerization by Arp2/3 protein complex at Listeria surface

Actin Motors - Myosin

- **Myosins**
 - **Myosin I**
 - All cells
 - One head domain
 - Binds actin
 - **Myosin II**
 - Muscle myosin
 - Also other cells
 - Dimer, 2 heads
 - Bind to each other to form myosin filament
 - Thick filament
Actin Motors- Myosin

Myosin I (green), Myosin II (red)
Dr. Edward Korn, Dr. Thomas Lynch, NIH: Polyclonal anti-Acanthamoeba myosin-I antibody revealed a unique localization to myosin "a" motors.

Actin (red), Myosin II (green)
Late Philip Presley, MBL: Fluorescence filter tuning of Zeiss Photomicroscope-III, allowing precise registration for the dual channel exposures.

Myosin Movement
MBoC Figure 16-71

Muscle Types
• Skeletal, cardiac
 – Striated
 – sarcomeres
• Smooth
 – non-striated

Skeletal Muscle
MBoC Figure 16-83/85
http://www.lab.anhb.uwa.edu.au/mb140/
Muscle Contraction
- Sliding of filaments actin against myosin
 - Troponin and tropomyosin
 - Contraction of skeletal and cardiac muscle regulated by Ca^{2+} flux
- Smooth muscle cells and non-muscle cells
 - Contraction same mechanism
 - Contractile units smaller, less highly ordered
 - Activity and state of assembly controlled by Ca^{2+} - regulated phosphorylation of a myosin

Microfilament Binding Molecules
- **Cytochalasin D**
 - Fungal metabolite
 - Binds barbed end
 - Inhibits polymerization and depolymerization
 - Cell permeant
 - Active in low micromolar
- **Phalloidin**
 - Fungal metabolite
 - Binds and stabilizes F-actin
 - Not cell permeant
 - Fluorescent derivatives are used to stain F-actin in situ and in vitro
- **Jasplakinolide**
 - Sea sponge metabolite
 - Binds and stabilizes F-actin competitively with phalloidin
 - Causes nucleation
 - Cell permeant
 - Nanomolar Kd for F-actin
- **Latrunculin**
 - Sea sponge metabolite
 - Binds monomeric actin
 - Inhibits polymerization
 - Cell permeant
 - Active at low nanomolar

A Selection of MF Diseases 1
- **Actin**
 - Essential to cell that diseases due to mutation of cytoskeletal actin rarely seen
- **Cardiac Actin**
- **Tropomyosin**

A Selection of MF Diseases 2
- **Myosin**
- **Wasp**
 - Novel mutations in the Wiskott-Aldrich syndrome protein gene and their effects on transcriptional, translational, and clinical phenotypes.
- **Destrin**
- **Filamin**
Model of function