Outline

• How can you identify Adult Stem Cells?
 • Cell Surface Antigens
 • Fluorescence-Activated Cell Sorting (FACS)
 • Magnetic-Activated Cell Sorting (MACS®)

• Pre-Clinical Model of Adult Stem Cell Transplantation for Muscular Dystrophy
 • Pathology & Current Hurdles

• Enhanced Stem Cell Transplantation Strategy
 • Host niche conditioning using chemotherapy with chemo-resistant donor cells

• Stem Cell Activation Signaling
 • New insights on systemic pro-regenerative signaling mechanisms.
Stem Cells - Therapeutic Applications

- Test Drugs on Human Cells in Culture
- Test drugs before conducting clinical trials
- Toxicity Testing
- Understand how to prevent and treat birth defects
- Study Cell Differentiation
- Generate Tissues and/or Cells for Transplantation
- Ectoderm: Neuron
- Mesoderm: Blood Cells
- Endoderm: Liver Cells
1. Generation of cells/tissues for Cell-Based Therapies

Direct Delivery

- Therapeutic gene
 - The therapeutic gene is packaged into a delivery vehicle such as a retrovirus
 - ...and injected into the patient

Cell-based Delivery

- Genetically modified ES cells (can block immune rejection from patient)
 - OR
 - ES cell HLA bank
 - OR
 - SCNT

- ES cells
 - in vitro differentiated stem cell
 - Adult stem cells
 - The therapeutic gene is packaged into a delivery vehicle such as a retrovirus and introduced into the cells.
 - The genetically modified cells are reintroduced into the patient.

Target organ (e.g., liver)
How to Identify & Isolate Stem Cells?

Cells in suspension are tagged with fluorescent markers specific for undifferentiated stem cells.

Labeled cells are sent under pressure through a small nozzle and pass through an electric field.

A cell generates a negative charge if it fluoresces and a positive charge if it does not.

Stem cell found
How to Identify & Isolate Stem Cells?

Figure E.1.1. Identifying Cell Surface Markers Using Fluorescent Tags.
Cell Surface Antigens - Lymphocyte Example

- CD34
- CD45
- CD15 (Granulocyte)
- CD14 (Monocyte)
- CD45
- CD4 (Helper T-lymphocyte)
- CD3
- CD25 (Activated T-lymphocyte)
- CD45
- CD19 (B-lymphocyte)
- CD61 (Thrombocyte)
- CD45
- CD3 (Suppressor T-lymphocyte)
Absence of Dystrophin in DMD Patients

- **Duchenne Muscular Dystrophy (DMD)**
 - X-linked disorder with defects in Dystrophin gene
 - 1:3500 live Male Birth (20,000 babies / year)
 - Confined to wheelchair by 12 yrs and death by 30 yrs
 - Several mouse models exist including *mdx* mice (Dystrophin KO)
Dystrophin & Dystrophin-Glycoprotein Complex

- 4 Major domains
 - N-terminal
 - Central rod
 - Cysteine rich
 - C-terminal

- Crucial regions
 - ABDs
 - DgBD

Dystrophin and the dystrophin–glycoprotein complex

Expert Reviews in Molecular Medicine © 2009 Cambridge University Press
Muir & Chamberlain (2009)
Therapeutic Interventions for DMD

- **Viral vectors**
 - Adeno-associated virus
 - + High tropism for striated muscle
 - + Effective systemic delivery
 - + Low immunogenicity
 - - Low capacity
 - Lentivirus
 - + Permanent transduction
 - + Works well for ex vivo modification of cells
 - - Risk of insertional mutagenesis
 - hd-Adenovirus
 - + High capacity
 - - Modestly immunogenic
 - - Low tropism for skeletal muscle

Strategies for treating the muscular dystrophies

Muir & Chamberlain (2009)
Therapeutic Interventions for DMD

a. Viral vectors
 - Adeno-associated virus
 + High tropism for striated muscle
 + Effective systemic delivery
 + Low immunogenicity
 - Low capacity
 - Lentivirus
 + Permanent transduction
 + Works well for ex vivo modification of cells
 - Risk of insertional mutagenesis
 - hd-Adenovirus
 + High capacity
 - Moderately immunogenic
 - Low tropism for skeletal muscle

b. Exon skipping
 - Low immunogenicity
 - Effective systemic delivery
 - Potentially toxic byproducts

c. Plasmid DNA
 - Simplicity, relative ease/cost of synthesis
 - Full-length dystrophin
 - Potential toxicity and low transfection efficiency

(d) Cell therapy
 - Regeneration of muscle
 - Potentially costly
 - Isolation and expansion methods in autologous setting
 - Immune rejection in allogeneic setting

Strategies for treating the muscular dystrophies
Muir & Chamberlain (2009)

Expert Reviews in Molecular Medicine © 2009 Cambridge University Press
Muscular Dystrophies (MD)

• Over 40 forms identified

• 4 Most common types are…
 • Duchenne Muscular Dystrophy (DMD) & Becker Muscular Dystrophy (BMD)
 • Myotonic Dystrophy (DM1)
 • Facioscapulohumeral Muscular Dystrophy (FSHD)
Cell Therapy - *Myoblast Transfer Therapy*

- **Aim:** donor cell engraftment and fusion to form muscle fiber heterokaryon.

- **Initial Limitations…**
 - >75% *donor cell death within 3 days following transplantation*
 - *Anoikis / Immune-rejection following ex vivo expansion*
Strategies for Enhancing Donor Cell Survival: Conditioning of the Host Niche

• Radiation & Cryodamage
 • Safety of use to achieve clinically meaningful level of ablation
 • Non-discriminatory against donor cells

• Chemotherapeutic Drug-Mediated Selective Survival of Donor Cells
 • Established in bone-marrow transplantation
Cell Therapy: Skeletal Muscle Biology

(a) Fusion of myoblasts into muscle fiber

(b) Muscle fiber

MUSCLE

GROUP OF MUSCLE FIBRES

- Epimysium
- Perimysium
- Fasciculus
- Endomysium
- Capillary