School of Medical Sciences, Faculty of Medicine
The University of New South Wales, Sydney, Australia
Lecture Overview

• Microfilaments
 – Structure, function and regulation

• Actin
 – Motility
 – Adhesion, focal adhesions
 – Actin binding proteins, myosin motors
 – Muscle actins

• Microfilament diseases

• UNSW Cell Biology
 • http://cellbiology.med.unsw.edu.au/units/science/lecture07.htm

Image: Dr. Barber at Pikeville College, KY
Microfilament References

• Medline (April) References
 – Actin 62,901 (08)
 • 58,545 (07) 54,273 (06) 50,096 (05)
 46,353 (04)
 – Actin Binding Proteins 63,038 (08)
 • 59,067 (07) 54,711 (06) 50,620 (05)
 46,945 (04)
 – Myosin 30,500 (08)
 • 29,099 (07) 27,683 (06) 26,286 (05)
 24,924 (04)

• Textbooks
 – Essential Cell Biology Ch16 p527-542
 – Molecular Biology of Cell Ch16 p821
 – Molecular Cell Biology Ch19
Cytoskeleton Filaments

microfilaments

intermediate filaments (V)

microtubules

(K)

30 µm
Structural Systems

Microfilaments
- shape
- motility
- contractility
- cytokinesis
- transport
- compartments

Microtubules
- transport
- karyokinesis

Intermediate Filaments
- compression resistance
Actin functional challenge

Diversify function
 • dynamics
 • organisation
 • mechanics

Spatial specialisation
 • pool sizes
 • function

Evolution
 • simple principle
Microfilaments

- Twisted chain 7 nm diameter
- Compared to MT
 - Thinner, more flexible, shorter
- Point in same direction
- Different organisation in different cellular regions
Actin Microfilament Formation

- Globular actin monomer (g actin) polymerise to Filamentous actin (f actin)
 - Cells approx 50:50
 - Monomer can add to either (+ or -) end
 - Faster at + end
- Actin-ATP hydrolysed (ADP) following addition
 - Destabilises (like MT)
Nucleation/Elongation

- **Nucleation**
 - Two actin molecules bind weakly
 - addition of a third (trimer) stabilizes the complex
 - forms a "nucleation site"

- **Elongation**
 - Additional actin molecules form a long helical polymer
 - Initial period of growth
 - Then equilibrium phase reached

- **Dynamic Equilibrium**
 - Elongation \leftrightarrow Depolymerization controls filament length
Actin Types

• 6 Mammalian actin types (isoforms)
 – All are 43 Kd Protein

• 2 cytoskeletal isoforms in all non-muscle cells
 – Beta (β) 7p22-p12
 – Gamma (γ) 17q25

• 4 muscle isoforms in different muscle cells
 – Alpha (α) skeletal
 – Alpha (α) cardiac
 – Alpha (α) smooth
 – Gamma (γ) smooth
Actin Protein

- Conserved in mammals
- Different ratios ($\beta:\gamma$) in different cell types
- 374aa, 43 kD protein
- 4 aa difference between beta and gamma
 - at N-terminal
- Highly expressed gene
 - Promoter used in gene transfections

Gene

5' 3'

Protein

N C
Actin Isoforms are Functionally Distinct

β- vs γ-actin in myoblasts

- β-actin promotes cell spreading and stress fibres
- γ-actin inhibits cell spreading and stress fibre formation
- β- and γ-actin have different preferences for types of tropomyosins
Cell Movement

• Whole or part of cell
 – Amoeba, neutrophil, macrophages
 – Neuron processes
 • axon, dendrites
 – Common structures
 – Contraction
• Intracellular transport
Motile Structures

• Leading/Trailing Edge
 – extension/retraction
 – Actin nucleation

• Lamellipodia
 – Sheet-like extensions

• Filopodia
 – Thin protrusions

• Integrins anchor to ECM

MBoC Figure 16-55
Cell Migration

(A) Non-motile, unpolarized fibroblast

(B) Polarized, motile fibroblast

MT Depolymerization → Growth Factors, ECM gradient → Microtubule Polymerization

FA movement → Fibronectin Adhesion → MT polymerization

Disassembled Focal Adhesion → Stable, Static Focal Adhesion

IV Motile Zone → III Curling Zone → II Persistence Zone → I Formation Zone
Adhesive Functions

• Cell signalling
 – Modify cell cytoskeleton
 – Activate intracellular signalling pathways
 – Cell motility
 – **Note** adhesion is covered in detail in later Lecture
Adhesion Junctions

- Adherens Junctions
 - microfilaments anchor the plaque that occurs under the membrane of each cell.
 - plaques not as dense
 - also occur as hemiform
Adherens Junctions

- heart muscle, layers covering body organs, digestive tract.
- transmembrane proteins
- Cadherin
Adhesion Junctions

- **Adherens (cell-cell)**
 - cadherin (E-cadherin)
 - Links to cadherin in neighboring cell

- **Adherens (cell-matrix)**
 - Integrin
 - Links to extracellular matrix
Focal Adhesions
Adhesive Signalling
Actin Signaling

- **Rho**
 - Family of small GTPases organize the actin cytoskeleton
 - Rho, RAC, CDC42
 - Form different actin structures

- **Wasp**
 - Wiskott-Aldrich syndrome protein
 - a downstream effector
 - transfers signal from tyrosine kinase receptors and small GTPases to actin cytoskeleton

Image Source: http://www.zoo.uni-heidelberg.de/gep/k.thelen.htm
Actin Filaments

Actin

Tropomyosin
Tropomyosin slows ‘off-rate’

- Slow ‘off-rate’
- Increase tensile strength
Actin functional challenge

Diversify function
- dynamics
- organisation
- mechanics

Spatial specialisation
- pool sizes
- function

Evolution
- simple principle
Distinct subcellular sorting of cytoskeleton Tm isoforms
Isoforms Define Specific Functional Properties of Actin Filaments

- Spatially segregated filaments contain different tropomyosins.
- Spatially segregated filaments have different functional roles in the cell.
Small GTPase Regulate the Actin Cytoskeleton

Rho → Stress Fibres

Rac → Lamellapodia

Cdc 42 → Filipodia
Tm$_{NM1}^5$ over-expression mimics Rho activation

TmBr3 over-expression mimics Rac activation

Tm3 over-expression mimics Cdc42 activation

Actin Binding Proteins

• Regulate polymerisation and create different structures
 – Monomer binding protein
 • Sequester
 • release
 – Polymer binding proteins
 • Bundling
 • cross-linking
 • Severing
 • contracting
Actin Binding Protein Interactions

- Filamin dimer
- Spectrin tetramer
- Fimbrin monomer
- α-actinin dimer
- Filamin dimer

Filamin binds to filament (strong)

α-actinin

Actin filaments

Tropomyosin

Myosin-II

Network of cross-linked actin filaments

Bundle of contractile actin filaments

Assembly A

Assembly B

Microfilaments, 2010 Sliee 32

MBoC Figure 16-78
Actin Binding Proteins

<table>
<thead>
<tr>
<th>FUNCTION OF PROTEIN</th>
<th>EXAMPLE OF PROTEIN</th>
<th>COMPARATIVE SHAPES, SIZES, AND MOLECULAR MASS</th>
<th>SCHEMATIC OF INTERACTION WITH ACTIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form filaments</td>
<td>actin</td>
<td> 50 nm 370 x 43 kDa/m</td>
<td>minus end plus end preferred subunit addition</td>
</tr>
<tr>
<td>Strengthen filaments</td>
<td>tropomyosin</td>
<td> 2 x 35 kDa</td>
<td> 14 nm</td>
</tr>
<tr>
<td>Bundle filaments</td>
<td>fimbrin</td>
<td> 68 kDa</td>
<td> 40 nm</td>
</tr>
<tr>
<td>Bundle filaments</td>
<td>α-actinin</td>
<td> 2 x 100 kDa</td>
<td></td>
</tr>
<tr>
<td>Cross-link filaments</td>
<td>filamin</td>
<td> 2 x 270 kDa</td>
<td></td>
</tr>
<tr>
<td>Fragment filaments</td>
<td>gelsolin</td>
<td> 90 kDa</td>
<td></td>
</tr>
<tr>
<td>Slide filaments</td>
<td>myosin-II</td>
<td> 2 x 260 kDa</td>
<td></td>
</tr>
<tr>
<td>Slide filaments</td>
<td>myosin-I</td>
<td> 150 kDa</td>
<td></td>
</tr>
<tr>
<td>Move vesicles on filaments</td>
<td>myosin-I</td>
<td> 2 x 265 kDa plus 2 x 260 kDa</td>
<td></td>
</tr>
<tr>
<td>Attach sides of filaments to plasma membrane</td>
<td>spectrin</td>
<td> α β β α</td>
<td></td>
</tr>
<tr>
<td>Sequester actin monomers</td>
<td>thymosin</td>
<td> 5 kDa</td>
<td></td>
</tr>
</tbody>
</table>
Actin-related proteins (Arp2/3)

- Arp2/3 protein complex
 - control of polymerization
 - lamellipodia localization
 - human complex has 7 subunits
 - ARP2, ARP3, ARC41, ARC34, ARC21, ARC20, and ARC16

- Listeria monocytogenes
 - Induce actin polymerization by Arp2/3 protein complex at Listeria surface

Actin Motors - Myosin
Actin Motors - Myosin

• Myosins
 – Myosin I
 • All cells
 • One head domain
 – Binds actin
 – Myosin II
 • Muscle myosin
 – Also other cells
 • Dimer, 2 heads
 • Bind to each other to form myosin filament
 – Thick filament
Actin Motors- Myosin

Actin (red), Myosin II (green)
Late Philip Presley, MBL:
Fluorescence filter tuning of Zeiss Photomicroscope- III, allowing precise registration for the dual channel exposures.

Myosin I (green), Myosin II (red)
Dr. Edward Korn, Dr. Thomas Lynch, NIH:
Polyclonal anti-Acanthamoeba myosin-I antibody, revealed a unique localization to myosin isoforms

Image Source: http://faculty-web.at.northwestern.edu/med/fukui/04-Cytoskeleton.html
Myosin Movement

MBoC Figure 16-71
Muscle Types

• **Skeletal, cardiac**
 – Striated
 – sarcomeres

• **Smooth**
 – non-striated
Skeletal Muscle

Microfilaments, 2010 Slide 40

http://www.lab.anhb.uwa.edu.au/mb140/

MBoC Figure 16-83/85
Muscle Contraction

• sliding of filaments actin against myosin
 – troponin and tropomyosin
 • contraction of skeletal and cardiac muscle regulated by \(\text{Ca}^{2+} \) flux

• smooth muscle cells and non-muscle cells
 – contraction same mechanism
 – contractile units smaller less highly ordered
 • activity and state of assembly controlled by \(\text{Ca}^{2+} \) - regulated phosphorylation of a myosin
Microfilament Binding Molecules

- **Cytochalasin D**
 - Fungal metabolite
 - Binds barbed end
 - Inhibits polymerization and depolymerization
 - Cell permeant
 - Active in low micromolar

- **Phalloidin**
 - Fungal metabolite
 - Binds and stabilizes F-actin
 - Not cell permeant
 - Fluorescent derivatives are used to stain F-actin in situ and in vitro

- **Jasplakinolide**
 - Sea sponge metabolite
 - Binds and stabilizes F-actin competitively with phalloidin
 - Causes nucleation
 - Cell permeant
 - Nanomolar Kd for F-actin

- **Latrunculin**
 - Sea sponge metabolite
 - Binds monomeric actin
 - Inhibits polymerization
 - Cell permeant
 - Active at low nanomolar
A Selection of MF Diseases 1

• Actin
 • So essential to cell that diseases due to mutation of cytoskeletal actin rarely seen

• Cardiac Actin

• Tropomyosin
A Selection of MF Diseases 2

• Myosin

• Wasp
 • Novel mutations in the Wiskott-Aldrich syndrome protein gene and their effects on transcriptional, translational, and clinical phenotypes.

• Destrin

• Filamin